• Title/Summary/Keyword: Accuracy Simulation Algorithm

Search Result 814, Processing Time 0.026 seconds

Thermal Imaging Fire Detection Algorithm with Minimal False Detection

  • Jeong, Soo-Young;Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2156-2170
    • /
    • 2020
  • This paper presents a fire detection algorithm with a minimal false detection rate, intended for a thermal imaging surveillance environment, whose properties vary depending on temporal conditions of day or night and environmental changes. This algorithm was designed to minimize the false detection alarm rate while ensuring a high detection rate, as required in fire detection applications. It was necessary to reduce false fire detections due to non-flame elements occurring when existing fixed threshold-based fire detection methods were applied. To this end, adaptive flame thresholds that varied depending on the characteristics of input images, as well as the center of gravity of the heat-source and hot-source regions, were analyzed in an attempt to minimize such non-flame elements in the phase of selecting flame candidate blocks. Also, to remove any false detection elements caused by camera shaking, one of the most frequently raised issues at outdoor sites, preliminary decision thresholds were adaptively set to the motion pixel ratio of input images to maximize the accuracy of the preliminary decision. Finally, in addition to the preliminary decision results, the texture correlation and intensity of the flame candidate blocks were averaged for a specific period of time and tested for their conformity with the fire decision conditions before making the final decision. To verify the fire detection performance of the proposed algorithm, a total of ten test videos were subjected to computer simulation. As a result, the fire detection accuracy of the proposed algorithm was determined to be 94.24%, with minimum false detection, demonstrating its improved performance and practicality compared to previous fixed threshold-based algorithms.

Face Recognition by Fiducial Points Based Gabor and LBP Features (특징점기반 Gabor 및 LBP 피쳐를 이용한 얼굴 인식)

  • Kim, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • The accuracy of a real facial recognition system can be varied according to the accuracy of the eye detection algorithm when we design and implement a semi-automatic facial recognition algorithm depending on the eye position of a database. In this paper, a fully automatic facial recognition algorithm is proposed such that Gabor and LBP features are extracted from fiducial points of a face graph which was created by using fiducial points based on the eyes, nose, mouth and border lines of a face, fitted on the face image. In this algorithm, the recognition performance could be increased because a face graph can be fitted on a face image automatically and fiducial points based LPB features are implemented with the basic Gabor features. The simulation results show that the proposed algorithm can be used in real-time recognition for more than 1,000 faces and produce good recognition performance for each data set.

Method that determining the Hyperparameter of CNN using HS algorithm (HS 알고리즘을 이용한 CNN의 Hyperparameter 결정 기법)

  • Lee, Woo-Young;Ko, Kwang-Eun;Geem, Zong-Woo;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.22-28
    • /
    • 2017
  • The Convolutional Neural Network(CNN) can be divided into two stages: feature extraction and classification. The hyperparameters such as kernel size, number of channels, and stride in the feature extraction step affect the overall performance of CNN as well as determining the structure of CNN. In this paper, we propose a method to optimize the hyperparameter in CNN feature extraction stage using Parameter-Setting-Free Harmony Search (PSF-HS) algorithm. After setting the overall structure of CNN, hyperparameter was set as a variable and the hyperparameter was optimized by applying PSF-HS algorithm. The simulation was conducted using MATLAB, and CNN learned and tested using mnist data. We update the parameters for a total of 500 times, and it is confirmed that the structure with the highest accuracy among the CNN structures obtained by the proposed method classifies the mnist data with an accuracy of 99.28%.

A Novel Face Recognition Algorithm based on the Deep Convolution Neural Network and Key Points Detection Jointed Local Binary Pattern Methodology

  • Huang, Wen-zhun;Zhang, Shan-wen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.363-372
    • /
    • 2017
  • This paper presents a novel face recognition algorithm based on the deep convolution neural network and key point detection jointed local binary pattern methodology to enhance the accuracy of face recognition. We firstly propose the modified face key feature point location detection method to enhance the traditional localization algorithm to better pre-process the original face images. We put forward the grey information and the color information with combination of a composite model of local information. Then, we optimize the multi-layer network structure deep learning algorithm using the Fisher criterion as reference to adjust the network structure more accurately. Furthermore, we modify the local binary pattern texture description operator and combine it with the neural network to overcome drawbacks that deep neural network could not learn to face image and the local characteristics. Simulation results demonstrate that the proposed algorithm obtains stronger robustness and feasibility compared with the other state-of-the-art algorithms. The proposed algorithm also provides the novel paradigm for the application of deep learning in the field of face recognition which sets the milestone for further research.

Hybrid Dual Quaternion Algorithm For Precise Strapdown Inertial Navigation (정밀 스트랩다운 관성항법을 위한 혼합 이체쿼터니언 알고리즘)

  • Shim, Ju-Young;Lee, Han-Sung;Park, Chan-Gook;Yu, Myeong-Jong;Lee, Hyung-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.627-632
    • /
    • 2007
  • Dual quaternion is efficient methodology to express rotation and translation of the vehicle's movements in the unified frame work. Recently, a strapdown inertial navigation algorithm based on dual quaternion was introduced. By comparing and analyzing the classical and dual-quaternion algorithms, this paper proposes a new strapdown inertial navigation algorithm that maintains the accuracy benefit of the dual-quaternion algorithm with considerable computational reduction. Simulation results show the efficiency of the proposed hybrid strapdown navigation algorithm.

Root-assisted MUSIC algorithm for the efficient DOA estimation in Multi-Jammer Environments (다중 재머 환경에서 DOA 추정 성능 개선을 위한 Root-assisted MUSIC 알고리즘)

  • Lee, Ju Hyun;Choi, Heon Ho;Choi, Yun Sub;Lim, Deok Won;Park, Chansik;Lee, Sang Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.4
    • /
    • pp.386-395
    • /
    • 2013
  • This paper proposes a root-assisted MUSIC algorithm which uses a combination of the MUSIC and the root-MUSIC algorithm. This algorithm consists of two steps. Firstly, a coarse DOA is computed by the root-MUSIC algorithm. Secondly, a precise DOA estimation is carried out by the MUSIC algorithm in the reduced searching range. This paper analyzes the accuracy and the resolution performance of the proposed DOA estimation method using a software simulation platform.

Metaheuristic-designed systems for simultaneous simulation of thermal loads of building

  • Lin, Chang;Wang, Junsong
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.677-691
    • /
    • 2022
  • Water cycle algorithm (WCA) has been a very effective optimization technique for complex engineering problems. This study employs the WCA for simultaneous prediction of heating load (LH) and cooling load (LC) in residential buildings. This algorithm is responsible for optimally tuning a neural network (NN). Utilizing 614 records, the behavior of the LH and LC is explored and the captured knowledge is then used to predict for 154 unanalyzed building conditions. Since the WCA is a population-based algorithm, different numbers of the searching agents were tested to find the most optimum configuration. It was observed that the best solution is discovered by 500 agents. A comparison with five newly-developed benchmark optimizers, namely equilibrium optimizer (EO), multi-tracker optimization algorithm (MTOA), slime mould algorithm (SMA), multi-verse optimizer (MVO), and electromagnetic field optimization (EFO) revealed that the WCANN predicts the desired parameters with considerably larger accuracy. Obtained root mean square errors (1.4866, 2.1296, 2.8279, 2.5727, 2.5337, and 2.3029 for the LH and 2.1767, 2.6459, 3.1821, 2.9732, 2.9616, and 2.6890 for the LC) indicated that the most reliable prediction was presented by the proposed model. The EFONN, however, provided a more time-effective solution. Lastly, an explicit predictive formula was elicited from the WCANN.

Research on Speed Estimation Method of Induction Motor based on Improved Fuzzy Kalman Filtering

  • Chen, Dezhi;Bai, Baodong;Du, Ning;Li, Baopeng;Wang, Jiayin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.272-275
    • /
    • 2014
  • An improved fuzzy Kalman filtering speed estimation scheme was proposed by means of measuring stator side voltage and current value based on vector control state equation of induction motor. The designed fuzzy adaptive controller conducted recursive online correction of measurement noise covariance matrix by monitoring the ratio of theory residuals and actual residuals to make it approach real noise level gradually, allowing the filter to perform optimal estimation to improve estimation accuracy of EKF. Meanwhile, co-simulation scheme based on MATLAB and Ansoft was proposed in order to improve simulation accuracy. Field-circuit coupling problems of induction motor under the action of vector control were solved and the parameter optimization accuracy was improved dramatically. The simulation and experimental results show that this algorithm has a strong ability to inhibit the random measurement noise. It is able to estimate motor speed accurately, and has superior static and dynamic characteristics.

The Study on New Wireless TCP-Westwood Algorithm having Available Bandwidth Estimation within Allowable Range (허용범위내 가용대역측정값을 가지는 새로운 무선 TCP-Westwood 알고리즘에 대한 연구)

  • Yoo, Chang-Yeol;Kim, Dong-Hoi
    • Journal of Digital Contents Society
    • /
    • v.15 no.2
    • /
    • pp.147-154
    • /
    • 2014
  • There have been company researches for TCP-Westwood algorithms in wireless TCP environment with high packet loss rate. Because the TCP-Westwood algorithm adjusts the congestion window according to the ABE(Available Bandwidth Estimation), the algorithm has a problem which the accuracy of ABE decreases as the error rate increases. To solve such a problem, the proposed scheme in this paper adopts the existing packet pattern based algorithm that the ABE is ignored when the arriving interval time of ACK is longer than a given interval time and uses new algorithm that the ABE is reallocated to a given allowable ABE when the ABE is over the allowable range. The proposed scheme shows the simulation result that the ABE is closest to the setting bandwidth for simulation compared to the existing algorithms.

Relay Selection Scheme Based on Quantum Differential Evolution Algorithm in Relay Networks

  • Gao, Hongyuan;Zhang, Shibo;Du, Yanan;Wang, Yu;Diao, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3501-3523
    • /
    • 2017
  • It is a classical integer optimization difficulty to design an optimal selection scheme in cooperative relay networks considering co-channel interference (CCI). In this paper, we solve single-objective and multi-objective relay selection problem. For the single-objective relay selection problem, in order to attain optimal system performance of cooperative relay network, a novel quantum differential evolutionary algorithm (QDEA) is proposed to resolve the optimization difficulty of optimal relay selection, and the proposed optimal relay selection scheme is called as optimal relay selection based on quantum differential evolutionary algorithm (QDEA). The proposed QDEA combines the advantages of quantum computing theory and differential evolutionary algorithm (DEA) to improve exploring and exploiting potency of DEA. So QDEA has the capability to find the optimal relay selection scheme in cooperative relay networks. For the multi-objective relay selection problem, we propose a novel non-dominated sorting quantum differential evolutionary algorithm (NSQDEA) to solve the relay selection problem which considers two objectives. Simulation results indicate that the proposed relay selection scheme based on QDEA is superior to other intelligent relay selection schemes based on differential evolutionary algorithm, artificial bee colony optimization and quantum bee colony optimization in terms of convergence speed and accuracy for the single-objective relay selection problem. Meanwhile, the simulation results also show that the proposed relay selection scheme based on NSQDEA has a good performance on multi-objective relay selection.