• 제목/요약/키워드: Accuracy Simulation Algorithm

검색결과 811건 처리시간 0.026초

직선운동 시스템의 정밀도 시뮬레이션 기술 (Accuracy Simulation of the Precision Linear Motion Systems)

  • 오정석;김경호;박천홍;정성종;이선규;김수진
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.275-284
    • /
    • 2011
  • The accuracy simulation technology of linear motion system is introduced in this paper. Motion errors and positioning errors are simulated using informations on the design parameters of elements of linear motion system. 5 Degree-of-freedom motion error analysis algorithm utilizing the transfer function method and positioning error analysis algorithm which are main frame of accuracy simulation are introduced. Simulated motion errors are compared with experimental results for verifying the effectiveness. Then, using the proposed algorithms, simulation is performed to investigate the effects of ballscrew and linear motor on the motion errors. Finally, the influence of feedback sensor position on the positioning error is also discussed.

Application of an Optimized Support Vector Regression Algorithm in Short-Term Traffic Flow Prediction

  • Ruibo, Ai;Cheng, Li;Na, Li
    • Journal of Information Processing Systems
    • /
    • 제18권6호
    • /
    • pp.719-728
    • /
    • 2022
  • The prediction of short-term traffic flow is the theoretical basis of intelligent transportation as well as the key technology in traffic flow induction systems. The research on short-term traffic flow prediction has showed the considerable social value. At present, the support vector regression (SVR) intelligent prediction model that is suitable for small samples has been applied in this domain. Aiming at parameter selection difficulty and prediction accuracy improvement, the artificial bee colony (ABC) is adopted in optimizing SVR parameters, which is referred to as the ABC-SVR algorithm in the paper. The simulation experiments are carried out by comparing the ABC-SVR algorithm with SVR algorithm, and the feasibility of the proposed ABC-SVR algorithm is verified by result analysis. Continuously, the simulation experiments are carried out by comparing the ABC-SVR algorithm with particle swarm optimization SVR (PSO-SVR) algorithm and genetic optimization SVR (GA-SVR) algorithm, and a better optimization effect has been attained by simulation experiments and verified by statistical test. Simultaneously, the simulation experiments are carried out by comparing the ABC-SVR algorithm and wavelet neural network time series (WNN-TS) algorithm, and the prediction accuracy of the proposed ABC-SVR algorithm is improved and satisfactory prediction effects have been obtained.

MOS 로직 및 타이밍 시뮬레이션을 위한 데이타구조 및 알고리즘 (A data structure and algorithm for MOS logic-with-timing simulation)

  • 공진흥
    • 전자공학회논문지A
    • /
    • 제33A권6호
    • /
    • pp.206-219
    • /
    • 1996
  • This paper describes a data structure and evaluation algorithm to improve the perofmrances MOS logic-with-timing simulation in computation and accuracy. In order to efficiently simulate the logic and timing of driver-load networks, (1) a tree data structure to represent the mutual interconnection topology of switches and nodes in the driver-lod network, and (2) an algebraic modeling to efficiently deal with the new represetnation, (3) an evaluation algorithm to compute the linear resistive and capacitive behavior with the new modeling of driver-load networks are developed. The higher modeling presented here supports the structural and functional compatibility with the linear switch-level to simulate the logic-with-timing of digital MOS circuits at a mixed-level. This research attempts to integrate the new approach into the existing simulator RSIM, which yield a mixed-klevel logic-with-timing simulator MIXIM. The experimental results show that (1) MIXIM is a far superior to RSIM in computation speed and timing accuracy; and notably (2) th etiming simulation for driver-load netowrks produces the accuracy ranged within 17% with respect ot the analog simulator SPICE.

  • PDF

ICS 중계기를 위한 적응형 탐색 채널추정 알고리듬 (Adaptive search channel estimate algorithm for ICS Repeater)

  • 이상수;이석희;방성일
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.285-286
    • /
    • 2008
  • In this paper, we propose adaptive search channel estimate algorithm. The proposed algorithm is modified LMS algorithm which has a variable step size and parallel convolution. In simulation result, a error estimate accuracy of the proposed algorithm is about -20 dB and general LMS algorithm is about 10 dB. The proposed algorithm is better error estimate accuracy than general LMS algorithm.

  • PDF

Improved DV-Hop Localization Algorithm Based on Bat Algorithm in Wireless Sensor Networks

  • Liu, Yuan;Chen, Junjie;Xu, Zhenfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.215-236
    • /
    • 2017
  • Obtaining accurate location information is important in practical applications of wireless sensor networks (WSNs). The distance vector hop (DV-Hop) is a frequently-used range-free localization algorithm in WSNs, but it has low localization accuracy. Moreover, despite various improvements to DV-Hop-based localization algorithms, maintaining a balance between high localization accuracy and good stability and convergence is still a challenge. To overcome these shortcomings, we proposed an improved DV-Hop localization algorithm based on the bat algorithm (IBDV-Hop) for WSNs. The IBDV-Hop algorithm incorporates optimization methods that enhance the accuracy of the average hop distance and fitness function. We also introduce a nonlinear dynamic inertial weight strategy to extend the global search scope and increase the local search accuracy. Moreover, we develop an updated solutions strategy that avoids premature convergence by the IBDV-Hop algorithm. Both theoretical analysis and simulation results show that the IBDV-Hop algorithm achieves higher localization accuracy than the original DV-Hop algorithm and other improved algorithms. The IBDV-Hop algorithm also exhibits good stability, search capability and convergence, and it requires little additional time complexity and energy consumption.

New accuracy indicator to quantify the true and false modes for eigensystem realization algorithm

  • Wang, Shuqing;Liu, Fushun
    • Structural Engineering and Mechanics
    • /
    • 제34권5호
    • /
    • pp.625-634
    • /
    • 2010
  • The objective of this paper is to apply a new proposed accuracy indicator to quantify the true and false modes for Eigensystem Realization Algorithm using output-based responses. First, a discrete mass-spring system and a simply supported continuous beam were modelled using finite element method. Then responses are simulated under random excitation. Natural Excitation Technique using only response measurements is applied to compute the impulse responses. Eigensystem Realization Algorithm is employed to identify the modal parameters on the simulated responses. A new accuracy indicator, Normalized Occurrence Number-NON, is developed to quantitatively partition the realized modes into true and false modes so that the false portions can be disregarded. Numerical simulation demonstrates that the new accuracy indicator can determine the true system modes accurately.

A Practical Radial Basis Function Network and Its Applications

  • Yang, S.Q.;Jia, C.Y.
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.297-300
    • /
    • 2001
  • Artificial neural networks have become important tools in many fields. This paper describes a new algorithm fur training an RBF network. This algorithm has two main advantages: higher accuracy and a too stable learning process. In addition, it can be used as a good classifier in pattern recognition.

  • PDF

움직임 추정 정확도가 움직임 보상 부호화에 미치는 영향 (Effects of Motion Estimation Accuracy on the Motion compensated Coding)

  • 김린철;이상욱;김재균
    • 대한전자공학회논문지
    • /
    • 제25권3호
    • /
    • pp.327-334
    • /
    • 1988
  • In this paper, the performance of PRA (pel recurdive algorithm) and BMA(block matching algorithm), which are the most well-known motion estimation techniques, is compared and the effects of the motion estimation accuracy on the motion compensated coding are described. Results of computer simulation on the real images indicate that the TSS (three step search), which is one of the BMA,is slightly better than the PRA in terms of the accuracy however, the required bit rate is 6.6-8.2 Kbps higher that of the PRA because the TSS requires a transmission of motion estimation vectors.

  • PDF

Point In Triangle Testing Based Trilateration Localization Algorithm In Wireless Sensor Networks

  • Zhang, Aiqing;Ye, Xinrong;Hu, Haifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권10호
    • /
    • pp.2567-2586
    • /
    • 2012
  • Localization of sensor nodes is a key technology in Wireless Sensor Networks(WSNs). Trilateration is an important position determination strategy. To further improve the localization accuracy, a novel Trilateration based on Point In Triangle testing Localization (TPITL)algorithm is proposed in the paper. Unlike the traditional trilateration localization algorithm which randomly selects three neighbor anchors, the proposed TPITL algorithm selects three special neighbor anchors of the unknown node for trilateration. The three anchors construct the smallest anchor triangle which encloses the unknown node. To choose the optimized anchors, we propose Point In Triangle testing based on Distance(PITD) method, which applies the estimated distances for trilateration to reduce the PIT testing errors. Simulation results show that the PIT testing errors of PITD are much lower than Approximation PIT(APIT) method and the proposed TPITL algorithm significantly improves the localization accuracy.

Surface Centroid TOA Location Algorithm for VLC System

  • Zhang, Yuexia;Chen, Hang;Chen, Shuang;Jin, Jiacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.277-290
    • /
    • 2019
  • The demand for indoor positioning is increasing day by day. However, the widely used positioning methods today cannot satisfy the requirements of the indoor environment in terms of the positioning accuracy and deployment cost. In the existing research domain, the localization algorithm based on three-dimensional space is less accurate, and its robustness is not high. Visible light communication technology (VLC) combines lighting and positioning to reduce the cost of equipment deployment and improve the positioning accuracy. Further, it has become a popular research topic for telecommunication and positioning in the indoor environment. This paper proposes a surface centroid TOA localization algorithm based on the VLC system. The algorithm uses the multiple solutions estimated by the trilateration method to form the intersecting planes of the spheres. Then, it centers the centroid of the surface area as the position of the unknown node. Simulation results show that compared with the traditional TOA positioning algorithm, the average positioning error of the surface centroid TOA algorithm is reduced by 0.3243 cm and the positioning accuracy is improved by 45%. Therefore, the proposed algorithm has better positioning accuracy than the traditional TOA positioning algorithm, and has certain application value.