• Title/Summary/Keyword: Accuracy

Search Result 34,202, Processing Time 0.058 seconds

Algorithm for Correcting Error in Smart Card Data Using Bus Information System Data (버스정보시스템 데이터를 활용한 교통카드 정류장 정보 오류 보정 알고리즘)

  • Hye Inn Song;Hwa Jeong Tak;Kang Won Shin;Sang Hoon Son
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.131-146
    • /
    • 2023
  • Smart card data is widely used in the public transportation field. Despite the inevitability of various errors occur during the data collection and storage; however, smart card data errors have not been extensively studied. This paper investigates inherent errors in boarding and alighting station information in smart card data. A comparison smart card data and bus boarding and alighting survey data for the same time frame shows that boarding station names differ by 6.2% between the two data sets. This indicates that the error rate of smart card data is 6.2% in terms of boarding station information, given that bus boarding and alighting survey data can be considered as ground truth. This paper propose 6-step algorithm for correcting errors in smart card boarding station information, linking them to corresponding information in Bus Information System(BIS) Data. Comparing BIS data and bus boarding and alighting survey data for the same time frame reveals that boarding station names correspond by 98.3% between the two data sets, indicating that BIS data can be used as reliable reference for ground truth. To evaluate its performance, applying the 6-step algorithm proposed in this paper to smart card data set shows that the error rate of boarding station information is reduced from 6.2% to 1.0%, resulting in a 5.2%p improvement in the accuracy of smart card data. It is expected that the proposed algorithm will enhance the process of adjusting bus routes and making decisions related to public transportation infrastructure investments.

Biomechanical Research Trends for Alpine Ski Analysis (알파인 스키 분석을 위한 운동역학 연구 동향)

  • Lee, Jusung;Moon, Jeheon;Kim, Jinhae;Hwang, Jinny;Kim, Hyeyoung
    • 한국체육학회지인문사회과학편
    • /
    • v.57 no.6
    • /
    • pp.293-308
    • /
    • 2018
  • This study was carried out to investigate the current trends in skiing-related research from existing literature in the field of kinematics, measurement sensor and computer simulation. In the field of kinematics, research is being conducted on the mechanism of ski turn, posture analysis according to the grade and skill level of skiers, friction force of ski and snow, and air resistance. In the field of measurement sensor and computer simulation, researches are being conducted for researching and developing equipment using IMU sensor and GPS. The results of this study are as follows. First, beyond the limits of the existing kinematic analysis, it is necessary to develop measurement equipment that can analyze the entire skiing area and can be deployed with ease at the sports scene. Second, research on the accuracy of information obtained using measurement sensors and various analysis techniques based on these measures should be carried out continuously to provide data that can help the sports scene. Third, it is necessary to use computer simulation methods to clarify the injury mechanism and discover ways to prevent injuries related to skiing. Fourth, it is necessary to provide optimized ski trajectory algorithm by developing 3D ski model using computer simulation and comparing with actual skiing data.

Digital Twin-based Cadastral Resurvey Performance Sharing Platform Design and Implementation (디지털트윈 기반의 지적재조사 성과공유 플랫폼 설계 및 구현)

  • Kim, IL
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.1
    • /
    • pp.37-46
    • /
    • 2023
  • As real estate values rise, interest in cadastral resurvey is increasing. Accordingly, a cadastral resurvey project is actively underway for drone operation through securing work efficiency and improving accuracy. The need for utilization and management of cadastral resurvey results (drone images) is being raised, and through this study, a 3D spatial information platform was developed to solve the existing drone image management and utilization limitations and to provide drone image-based 3D cadastral information. It is proposed to build and use. The study area was selected as a district that completed the latest cadastral resurvey project in which the study was organized in February 2023. Afterwards, a web-based 3D platform was applied to the study to solve the user's spatial limitations, and the platform was designed and implemented based on drone images, spatial information, and attribute information. Major functions such as visualization of cadastral resurvey results based on 3D information and comparison of performance between previous cadastral maps and final cadastral maps were implemented. Through the open platform established in this study, anyone can easily utilize the cadastral resurvey results, and it is expected to utilize and share systematic cadastral resurvey results based on 3-dimensional information that reflects the actual business district. In addition, a continuous management plan was proposed by integrating the distributed results into one platform. It is expected that the usability of the 3D platform will be further improved if a platform is established for the whole country in the future and a service linked to the cadastral resurvey administrative system is established.

The Automated Scoring of Kinematics Graph Answers through the Design and Application of a Convolutional Neural Network-Based Scoring Model (합성곱 신경망 기반 채점 모델 설계 및 적용을 통한 운동학 그래프 답안 자동 채점)

  • Jae-Sang Han;Hyun-Joo Kim
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.3
    • /
    • pp.237-251
    • /
    • 2023
  • This study explores the possibility of automated scoring for scientific graph answers by designing an automated scoring model using convolutional neural networks and applying it to students' kinematics graph answers. The researchers prepared 2,200 answers, which were divided into 2,000 training data and 200 validation data. Additionally, 202 student answers were divided into 100 training data and 102 test data. First, in the process of designing an automated scoring model and validating its performance, the automated scoring model was optimized for graph image classification using the answer dataset prepared by the researchers. Next, the automated scoring model was trained using various types of training datasets, and it was used to score the student test dataset. The performance of the automated scoring model has been improved as the amount of training data increased in amount and diversity. Finally, compared to human scoring, the accuracy was 97.06%, the kappa coefficient was 0.957, and the weighted kappa coefficient was 0.968. On the other hand, in the case of answer types that were not included in the training data, the s coring was almos t identical among human s corers however, the automated scoring model performed inaccurately.

Development of Homogenization Data-based Transfer Learning Framework to Predict Effective Mechanical Properties and Thermal Conductivity of Foam Structures (폼 구조의 유효 기계적 물성 및 열전도율 예측을 위한 균질화 데이터 기반 전이학습 프레임워크의 개발)

  • Wonjoo Lee;Suhan Kim;Hyun Jong Sim;Ju Ho Lee;Byeong Hyeok An;Yu Jung Kim;Sang Yung Jeong;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.205-210
    • /
    • 2023
  • In this study, we developed a transfer learning framework based on homogenization data for efficient prediction of the effective mechanical properties and thermal conductivity of cellular foam structures. Mean-field homogenization (MFH) based on the Eshelby's tensor allows for efficient prediction of properties in porous structures including ellipsoidal inclusions, but accurately predicting the properties of cellular foam structures is challenging. On the other hand, finite element homogenization (FEH) is more accurate but comes with relatively high computational cost. In this paper, we propose a data-driven transfer learning framework that combines the advantages of mean-field homogenization and finite element homogenization. Specifically, we generate a large amount of mean-field homogenization data to build a pre-trained model, and then fine-tune it using a relatively small amount of finite element homogenization data. Numerical examples were conducted to validate the proposed framework and verify the accuracy of the analysis. The results of this study are expected to be applicable to the analysis of materials with various foam structures.

Accuracy comparison of 3-unit fixed dental provisional prostheses fabricated by different CAD/CAM manufacturing methods (다양한 CAD/CAM 제조 방식으로 제작한 3본 고정성 임시 치과 보철물의 정확도 비교)

  • Hyuk-Joon Lee;Ha-Bin Lee;Mi-Jun Noh;Ji-Hwan Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.2
    • /
    • pp.31-38
    • /
    • 2023
  • Purpose: This in vitro study aimed to compare the trueness of 3-unit fixed dental provisional prostheses (FDPs) fabricated by three different additive manufacturing and subtractive manufacturing procedures. Methods: A reference model with a maxillary left second premolar and the second molar prepped and the first molar missing was scanned for the fabrication of 3-unit FDPs. An anatomically shaped 3-unit FDP was designed on computer-aided design software. 10 FDPs were fabricated by subtractive (MI group) and additive manufacturing (stereolithography: SL group, digital light processing: DL group, liquid crystal displays: LC group) methods, respectively (N=40). All FDPs were scanned and exported to the standard triangulated language file. A three-dimensional analysis program measured the discrepancy of the internal, margin, and pontic base area. As for the comparison among manufacturing procedures, the Kruskal-Wallis test and the Mann-Whitney test with Bonferroni correction were evaluated statistically. Results: Regarding the internal area, the root mean square (RMS) value of the 3-unit FDPs was the lowest in the MI group (31.79±6.39 ㎛) and the highest in the SL group (69.34±29.88 ㎛; p=0.001). In the marginal area, those of the 3-unit FDPs were the lowest in the LC group (25.39±4.36 ㎛) and the highest in the SL group (48.94±18.98 ㎛; p=0.001). In the pontic base area, those of the 3-unit FDPs were the lowest in the LC group (8.72±2.74 ㎛) and the highest in the DL group (20.75±2.03 ㎛; p=0.001). Conclusion: A statistically significant difference was observed in the RMS mean values of all the groups. However, in comparison to the subtractive manufacturing method, all measurement areas of 3-unit FDPs fabricated by three different additive manufacturing methods are within a clinically acceptable range.

Serum exosomal miR-192 serves as a potential detective biomarker for early pregnancy screening in sows

  • Ruonan Gao;Qingchun Li;Meiyu Qiu;Su Xie;Xiaomei Sun;Tao Huang
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1336-1349
    • /
    • 2023
  • Objective: The study was conducted to screen differentially expressed miRNAs in sows at early pregnancy by high-throughput sequencing and explore its mechanism of action on embryo implantation. Methods: The blood serum of pregnant and non-pregnant Landrace×Yorkshire sows were collected 14 days after artificial insemination, and exosomal miRNAs were purified for high throughput miRNA sequencing. The expression patterns of 10 differentially expressed (DE) miRNAs were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR quantified the abundance of serum exosomal miR-192 in pregnant and control sows, and the diagnostic power was assessed by receiver operating characteristic (ROC) analysis. The target genes of DE miRNAs were predicted with bioinformatics software, and the functional and pathway enrichment analysis was performed on gene ontology and the Kyoto encyclopedia of genes and genomes terms. Furthermore, a luciferase reporter system was used to identify the target relation between miR-192 and integrin alpha 4 (ITGA4), a gene influencing embryo implantation in pigs. Finally, the expression levels of miRNAs and the target gene ITGA4 were analyzed by qRT-PCR, and western blot, with the proliferation of BeWo cells detected by cell counting kit-8 (CCK-8). Results: A total of 221 known miRNAs were detected in the libraries of the pregnant and non-pregnant sows, of which 55 were up-regulated and 67 were down-regulated in the pregnant individuals compared with the non-pregnant controls. From these, the expression patterns of 10 DE miRNAs were validated. The qRT-PCR analysis further confirmed a significantly higher expression of miR-192 in the serum exosomes extracted from pregnant sows, when compared to controls. The ROC analysis revealed that miR-192 provided excellent diagnostic accuracy for pregnancy (area under the ROC curve [AUC]=0.843; p>0.001). The dual-luciferase reporter assay indicated that miR-192 directly targeted ITGA4. The protein expression of ITGA4 was reduced in cells that overexpressed miR-192. Overexpression of miR-192 resulted in the decreased proliferation of BeWo cells and regulated the expression of cell cycle-related genes. Conclusion: Serum exosomal miR-192 could serve as a potential biomarker for early pregnancy in pigs. miR-192 targeted ITGA4 gene directly, and miR-192 can regulate cellular proliferation.

Structural Optimization and Improvement of Initial Weight Dependency of the Neural Network Model for Determination of Preconsolidation Pressure from Piezocone Test Result (피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 구조 최적화 및 초기 연결강도 의존성 개선)

  • Kim, Young-Sang;Joo, No-Ah;Park, Hyun-Il;Park, Sol-Ji
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.115-125
    • /
    • 2009
  • The preconsolidation pressure has been commonly determined by oedometer test. However, it can also be determined by insitu test, such as piezocone test with theoretical and(or) empirical correlations. Recently, Neural Network (NN) theory was applied and some models were proposed to estimate the preconsolidation pressure or OCR. It was already found that NN model can come over the site dependency and prediction accuracy is greatly improved when compared with present theoretical and empirical models. However, since the optimization process of synaptic weights of NN model is dependent on the initial synaptic weights, NN models which are trained with different initial weights can't avoid the variability on prediction result for new database even though they have same structure and use same transfer function. In this study, Committee Neural Network (CNN) model is proposed to improve the initial weight dependency of multi-layered neural network model on the prediction of preconsolidation pressure of soft clay from piezocone test result. Prediction results of CNN model are compared with those of conventional empirical and theoretical models and multi-layered neural network model, which has the optimized structure. It was found that even though the NN model has the optimized structure for given training data set, it still has the initial weight dependency, while the proposed CNN model can improve the initial weight dependency of the NN model and provide a consistent and precise inference result than existing NN models.

Synoptic Change Characteristics of the East Asia Climate Appeared in Seoul Rainfall and Climatic Index Data (서울지점 강우자료와 기후지표자료에 나타난 동아시아 기후의 종관적 변화특성)

  • Hwang, Seok Hwan;Kim, Joong Hoon;Yoo, Chulsang;Chung, Gunhui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.409-417
    • /
    • 2009
  • In this study it was assessed the accuracy of the Chukwooki rainfall data in Seoul by comparing with tree-ring width index data, sunspot numbers, southern oscillation index (SOI) and global temperature anomaly. And it was investigated the correlations of climatic change and change characteristics in past north-east asia by comparisons of tree-ring width index data in near Korea. The results of this study shows that Chukwooki rainfall data has the strong reliance since the trends and depths of change are very well matched with other comparative data. And with the results by compared with tree-ring width index data in six sites of near Korea, climates of north-east asia are changed with strong correlations as being temporal and spatial and longterm periodic possibility of reproducing are exist on those changes. However characteristics of climate change post 1960 A.D. are investigated as represented differently to past although statistical moving characteristics or changing criterion are within the limitations of reproducing phase in the past since they represent the different trends and irregularity and their frequencies are increase. The results of this study are widely used on long-term forecasting for climate change in north-east asia.

An Improved Structural Reliability Analysis using Moving Least Squares Approximation (이동최소제곱근사법을 이용한 개선된 구조 신뢰성 해석)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.835-842
    • /
    • 2008
  • The response surface method (RSM) is widely adopted for the structural reliability analysis because of its numerical efficiency. However, the RSM is still time consuming for large-scale applications and sometimes shows large errors in the calculation of sensitivity of reliability index with respect to random variables. Therefore, this study proposes a new RSM in which moving least squares (MLS) approximation is applied. Least squares approximation generally used in the common RSM gives equal weight to the coefficients of the response surface function (RSF). On the other hand, The MLS approximation gives higher weight to the experimental points closer to the design point, which yields the RSF more similar to the limit state at the design point. In the procedure of the proposed method, a linear RSF is constructed initially and then a quadratic RSF is formed using the axial experimental points selected from the reduced region where the design point is likely to exist. The RSF is updated successively by adding one more experimental point to the previously sampled experimental points. In order to demonstrate the effectiveness of the proposed method, mathematical problems and ten-bar truss are considered as numerical examples. As a result, the proposed method shows better accuracy and computational efficiency than the common RSM.