• Title/Summary/Keyword: Accidents Scenario

Search Result 206, Processing Time 0.027 seconds

A Study on the Quantitative Risk Assessment of Hydrogen-CNG Complex Refueling Station (수소-CNG 복합충전소 정량적 위험성평가에 관한 연구)

  • Kang, Seung-Kyu;Huh, Yun-Sil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • This study performed a quantitative risk assessment for hydrogen-CNG complex refueling stations. Individual and societal risks were calculated by deriving accident scenarios that could occur at hydrogen and CNG refueling stations and by considering the frequency of accidents occurring for each scenario. As a result of the risk assessment, societal risk levels were within the acceptable range. However, individual risk has occurred outside the allowable range in some areas. To identify and manage risk components, high risk components were discovered through risk contribution analysis. High risks at the hydrogen-CNG complex refueling station were large leakage from CNG storage containers, compressors, and control panels. The sum of these risks contributed to approximately 88% of the overall risk of the fueling station. Therefore, periodic and intensive safety management should be performed for these high-risk elements.

Damage Effects Modeling by Chlorine Leaks of Chemical Plants (화학공장의 염소 누출에 의한 피해 영향 모델링)

  • Jeong, Gyeong-Sam;Baik, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.76-87
    • /
    • 2018
  • This study describes the damage effects modeling for a quantitative prediction about the hazardous distances from pressurized chlorine saturated liquid tank, which has two-phase leakage. The heavy gas, chlorine is an accidental substance that is used as a raw material and intermediate in chemical plants. Based on the evaluation method for damage prediction and accident effects assessment models, the operating conditions were set as the standard conditions to reveal the optimal variables on an accident due to the leakage of a liquid chlorine storage vessel. A model of the atmospheric diffusion model, ALOHA (V5.4.4) developed by USEPA and NOAA, which is used for a risk assessment of Off-site Risk Assessment (ORA), was used. The Yeosu National Industrial Complex is designated as a model site, which manufactures and handles large quantities of chemical substances. Weather-related variables and process variables for each scenario need to be modelled to derive the characteristics of leakage accidents. The estimated levels of concern (LOC) were calculated based on the Gaussian diffusion model. As a result of ALOHA modeling, the hazardous distance due to chlorine diffusion increased with increasing air temperature and the wind speed decreased and the atmospheric stability was stabilized.

Analyzing Chemical Reaction Routes of Explosion by a Mixed Acid - Focusing on Chemical Carriers - (혼산에 의한 폭발사고의 화학반응 경로 분석 - 화학물질 운반 선박을 중심으로 -)

  • Kang, Yu Mi;Yim, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.661-668
    • /
    • 2017
  • The purpose of this study is to analyze the chemical reaction pathway for explosion accident of mixed cargo. The analysis used a structural scenario using event-tree analysis. Structural scenarios were constructed by estimating various chemical reaction paths in the content of the mixed cargo accident recorded in the written verdict. The analytical method was applied to three kinds of analysis: chemical analysis based on chemical theory, quantitative analysis using chemical reaction formula, and probabilistic analysis through questionnaire. As a result of analysis, the main pathway of the accident occurred in three ways: the path of explosion due to the reaction of concentrated sulfuric acid with water, the path of explosion due to the reaction of metal and mixed acid, and the path of explosion by synthesizing with special substances. This result is similar to the path recorded in the validation, and it leads to thar the proposed path analysis method is valid. The proposed method is expected to be applicable to chemical reaction path estimation of various chemical accidents.

The Current Situation and Prospect of Safety Education Contents based on VR (VR기반 안전 교육콘텐츠 현황과 전망)

  • Lee, Young-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1294-1299
    • /
    • 2020
  • Recently, interest in safety education based on VR has been increasing, but it started rising doubts are growing over its effectiveness. Therefore, the purpose of this thesis project is to research the current status of safety education contents based on VR and present situations and future prospects for safety education based on VR. As a result of researching about safety education contents using VR, the movement or condition of characters in the contents in the VR environment was very unnatural. Especially, in simulations such as driving a VR device, the controller was skeptical about its efficiency because the operation was different from the actual environment. As a result, we would like to make suggestions and forecasts as follows: First, the production of real and twin environment in VR should be realized. Second, the natural movement of the character should be performed. Third, various controllers should be released in VR devices. Fourth, a realistic scenario should be developed.

A modification of the rip current warning system utilizing real-time observations: a database function of likelihood distributions (실시간 관측정보를 이용한 이안류 경보체계 개선 연구: 발생정도 DB함수의 활용)

  • Choi, Junwoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.843-854
    • /
    • 2022
  • For the rip current warning system to reduce rip-current accidents, the implementation method producing the risk index was modified. To produce fast response from the warning system based on real-time observations, the method employed the numerical results (i.e., rip current likelihoods according to the possible scenario) obtained in advance. In this study, instead of using the empirical curve-fitting functions of the previous method, the present modification utilized two-dimensional distributions (i.e., wave height and period, wave height and tidal elevation, wave height and direction, wave height and spreading of frequency-directional spectrum) of rip current likelihoods stacked in a database of the system. The wave and tidal observations in 2021 at the Haeundae coast were applied to the modified system, and its performances at several real events recorded in CCTV images were presented.

Investigation of aerodynamic behaviour of a high-speed train on different railway infrastructure scenarios under crosswind

  • Jiqiang, Niu;Yingchao, Zhang;Zhengwei, Chen;Rui, Li;Huadong, Yao
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.405-418
    • /
    • 2022
  • The aerodynamic behaviour of a CRH high-speed train under three infrastructure scenarios (flat ground, embankment, and viaduct) in the presence of a crosswind was simulated using a 1/8th scaled train model with three cars and the IDDES framework. The time-averaged and instantaneous flow field around the model were examined. The employed numerical algorithm was verified through a wind tunnel test, and the grid and timestep resolution analyses were conducted to ensure the reliability of the data. It was noted that the flow around the rail line was different under different infrastructure scenarios, especially in the case of the embankment, which degraded the aerodynamic performance of the train under the crosswind. The flow around the train on the flat ground and viaduct was different, although the aerodynamic performance of the train was similar in both cases. Moreover, the viaduct accidents were noted to have the most critical consequences, thereby requiring the most attention. The aerodynamic performance of the train on the windward track of the embankment under the crosswind was worse than that of the train on the leeward track. But for the other two infrastructure scenarios, the aerodynamic performance of the train on the windward track is relatively dangerous, which is mainly caused by the head car. These observations suggest that the aerodynamic behaviour of the train on an embankment under a crosswind must be carefully considered and that certain wind protection measures must be adopted around rail lines in windy areas.

Study of Situation Prediction Simulation for Navigation Information System of Ship (선박의 항행정보시스템을 위한 상황 예측 시뮬레이션 방안 연구)

  • Yi, Mi-Ra
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.127-135
    • /
    • 2010
  • Modern marine navigation requires officers on the bridge to monitor a torrent of data on both the insides and outsides of the ship from numerous useful devices. But despite these tools, navigators can still find it difficult to make a safe decision for two reasons: one is that too much data if provided too quickly tends to cause fatigue and overwhelm the officer, and the other is that any inconsistency across data from several different types of devices can lead to confusion. Indeed, the fact remains that the many marine accidents can be attributed to human error, and hence there is a strong need for decision-support tools for marine navigation. One technique of providing decision support is through the use of simulation to evaluate or predict system dynamics over time using an accurate model. This paper, as a simulation method for risk prediction for a navigation safety information system of ship, suggests a navigation prediction simulation system using various knowledge bases and discrete event simulation methodology, and supports the validity of the system through the examples of components in a restricted navigation situation scenario.

Design and Implementation of Dangerous Situation Assessment System using YOLOv4 and Data Modeling (YOLOv4와 데이터 모델링을 활용한 위험 상황 판정 시스템의 설계 및 구현)

  • Lee, Taejun;Kim, Sohyun;Yang, Seungeui;Hwang, Chulhyun;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.488-490
    • /
    • 2022
  • Recently, interest in industrial accidents such as the Industrial Safety and Health Act and the Serious Accident Punishment Act is increasing, and the demand for safety managers for safety management of workers in research institutes and industrial fields of various fields is increasing. For worker safety management, CCTVs are being installed in factories and workplaces, and workers are monitored to enhance safety management. In this paper, we intend to design a dangerous situation assessment system by constructing data using CCTV in such a workplace and modeling it in JSON format. The data modeling was produced by referring to the data set construction guide for artificial intelligence learning and the quality management guideline of the Korea National Information Society(NIA). Through this system, we want to check what kind of risk management exists in the workplace by risk situation scenario and use it to build a more systematic system.

  • PDF

Study of hydrodynamics and iodine removal by self-priming venturi scrubber

  • Jawaria Ahad;Talha Rizwan ;Amjad Farooq ;Khalid Waheed ;Masroor Ahmad ;Kamran Rasheed Qureshi ;Waseem Siddique ;Naseem Irfan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.169-179
    • /
    • 2023
  • Filtered containment system is a passive safety system that controls the over-pressurization of containment in case of a design-based accidents by venting high pressure gaseous mixture, consisting of air, steam and radioactive particulate and gases like iodine, via a scrubbing system. An indigenous lab scale facility was developed for research on iodine removal by venturi scrubber by simulating the accidental scenario. A mixture of 0.2 % sodium thiosulphate and 0.5 % sodium hydroxide, was used in scrubbing column. A modified mathematical model was presented for iodine removal in venturi scrubber. Improvement in model was made by addition of important parameters like jet penetration length, bubble rise velocity and gas holdup which were not considered previously. Experiments were performed by varying hydrodynamic parameters like liquid level height and gas flow rates to see their effect on removal efficiency of iodine. Gas holdup was also measured for various liquid level heights and gas flowrates. Removal efficiency increased with increase in liquid level height and gas flowrate up to an optimum point beyond that efficiency was decreased. Experimental results of removal efficiency were compared with the predicted results, and they were found to be in good agreement. Maximum removal efficiency of 99.8% was obtained.

Architecture Design for Disaster Prediction of Urban Railway and Warning System (UR-DPWS) based on IoT (IoT 기반 도시철도 재난 예지 및 경보 시스템 아키텍처 설계)

  • Eung-young Cho;Joong-Yoon Lee;Joo-Yeoun Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.163-174
    • /
    • 2024
  • Currently, the urban railway operating agency is improving the emergency telephone in operation into an IP-based "trackside integrated interface communication facility" that can support a variety of additional services in order to quickly respond to emergency situations within the tunnel. This study is based on this Analyze the needs of various stakeholders regarding the design of a system architecture that establishes an IoT sensor network environment to detect abnormal situations in the tunnel and transmits the collected information to the control center to predict disaster situations in advance, and defines the system requirements. In addition, a scenario model for disaster response was provided through the presentation of a service model. Through this, the perspective of responding to urban railway disasters changes from reactive response to proactive prevention, thereby ensuring safe operation of urban railways and preventing major industrial accidents.