• Title/Summary/Keyword: Accident response

Search Result 596, Processing Time 0.031 seconds

Sensitivity of SNF transport cask response to uncertainty in properties of wood inside the impact limiter under drop accident conditions

  • Lee, Eun-ho;Ra, ChiWoong;Roh, Hyungyu;Lee, Sang-Jeong;Park, No-Choel
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3766-3777
    • /
    • 2022
  • It is essential to ensure the safety of spent nuclear fuel (SNF) transport cask in drop situation that is included in transport accident scenarios. The safety of the drop situation is affected by the impact absorption performance of impact limiters. Therefore, when designing an impact limiter, the uncertainty in the material properties that affect the impact absorption performance must be considered. In this study, the material properties of the wood inside the impact limiter were selected as the variables for a parametric study. The sensitivity analysis of the drop response of the SNF transport cask with impact limiter was performed. The minimum wood strength required to prevent a direct collision between the cask and floor was derived from the analysis results. In addition, the plastic strain response was analyzed and strain-based evaluation was performed. Based on this result, the critical values of wood properties that change the impact dynamic characteristics were investigated. Finally, the optimal material properties of wood were obtained to secure the structural safety of the SNF transport cask. The results of this study can contribute to the development of SNF transport cask, thereby ensuring safety in transport accident conditions.

Efficient Safety Management in Inland Waters: Focused on Water Relief and Water Safety (효율적 내수면 안전관리 : 수난구호 및 수상안전을 중심으로)

  • Chung, Chul-Min;Yang, Gi-Geun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.3
    • /
    • pp.101-113
    • /
    • 2015
  • This study aims to prepare countermeasures to prevent and minimize drowning accident in inland waters by examining the current status of inland water safety management in Korea and diagnosing the defects. The defects in current inland water safety management is analyzed in four aspects. First is the legal defect that includes the absence of legislation that directs the inland water safety management. Second is the instructional defect such as the absence of educational program for prevention of inland water accidents and lack of professional water rescue experts. Third is cooperation defect such as dispersed reporting system and lack of private-public partnership in accident response. Fourth is the defect of emergency response ability, professionalism and accident response skills due to the dispersion and overlaps of safety management systems. In order to improve these defects, this study finds the countermeasures based on the survey of water sports professions and users and its analysis as follows: legislation of '(tentatively named) special act for water safety management in inland waters' is suggested in the legal aspects. A development of inland waters safety education program and training of water accident experts are suggested in the instructional aspects. Integrated operational system for water accident management, activation of safety network and re-establishment of private-public partnership are suggested in the cooperation aspects. Systematic and efficient inland water safety management plans such as enhancement of accident response skills and expertise and integrated inland water safety management with fire department-centered system were suggested in the aspects of emergency response ability.

Development of Emergency Response Plan System Using Quantitative Risk Assessment in Chemical Plants (화학공장에서의 정량적 위험성 평가를 이용한 비상 대응 계획 시스템 개발)

  • 임차순;서재민;엄성인;백종배;고재욱
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.69-74
    • /
    • 2001
  • In this study, we analyzed the accident scenarios of chemical plants through the analysis of lots of chemical accidents and using experts knowledge, and looked into the method of prevention and response. Moreover, we developed a systemic and actual Emergency Response Plan Software(ERPS) that could prevent, prepare and respond totally for the chemical industry facilities using the data from the accident effect estimation from the local society and the geographic information of a chemical plant. The ERPS consists of the information for the plant and process, the consequence analysis and the ERPTA(Emergency Response Plan Tree Analysis). In conclusion, the program developed in this study could help effectively all the chemical industry facilities to prevent and respond to possible accidents.

  • PDF

Severe Accident Management Using PSA Event Tree Technology

  • Choi, Young;Jeong, Kwang Sub;Park, SooYong
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.50-56
    • /
    • 2003
  • There are a lot of uncertainties in the severe accident phenomena and scenarios in nuclear power plants (NPPs) and one of the major issues for severe accident management is the reduction of these uncertainties. The severe accident management aid system using Probabilistic Safety Assessments (PSA) technology is developed for the management staff in order to reduce the uncertainties. The developed system includes the graphical display for plant and equipment status, previous research results by a knowledge-base technique, and the expected plant behavior using PSA. The plant model used in this paper is oriented to identify plant response and vulnerabilities via analyzing the quantified results, and to set up a framework for an accident management program based on these analysis results. Therefore the developed system may playa central role of information source for decision-making for severe accident management, and will be used as a training tool for severe accident management.

Suggestions to Improve the Effectiveness of National Radiological Emergency Response System (국내 방사능재난대응체계 실효성 제고를 위한 제언)

  • Moon, Joo Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.195-206
    • /
    • 2020
  • Although the national radiological emergency response system has been improved by incorporating lessons from the Fukushima nuclear power plant accident and recent domestic natural disasters, it has not fully incorporated these lessons. In addition, it cannot deal with a variety of aftermath of the radiological disaster. Even for the same disaster, the national emergency response system should comply with multiple domestic laws in our country. Furthermore, there are a few discrepancies between the articles of the domestic laws that the national radiological emergency response system should address. Therefore, this study investigates the characteristics of radiological disasters, examines articles on the domestic laws related to the national radiological emergency response system, and analyses the Japanese government's responses to the Fukushima nuclear power plant accident. Based on the results of the review, suggestions for the improvement of the national radiological emergency response system in terms of response organization and framework have been proposed in this study.

A Study of Emergency Response for the Leakage Accident of Hazardous and Noxious Substances in a Port (항만에서의 위험·유해물질(HNS) 누출사고 대응에 관한 연구)

  • Woo, Young Jin;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.32-38
    • /
    • 2016
  • In general, lots of containers including various dangerous materials are transported to the port located in big cities such as Busan where massive residents live. Thus, it's really important how to make the emergency response for the leak accidents of dangerous materials and evaluate the direct or indirect damages to adjacent areas. In this study, in order to make reasonable emergency plans, CA (Consequence Analysis) is employed after selecting a key hazardous and noxious material, hydrogen fluroide. This material accounts for the third largest portion of cargo volume among all dangerous materials and can cause a huge damage in case of leakages. As a case study, Busan North port is selected as a test port since the portion of dangerous materials is higher than that of other ports in Busan. It is assumed that 1 ton of hydrogen fluoride is spilled at Busan North port. CA is performed to assess the impact of this accident. Throughout CA, the ERPG-2 range of a leak accident can be evaluated and this result can be used for decision making tools for mitigating the impact of a leak accident. To mitigate the damage of this accident, suitable a protective equipment and resident evacuation procedures should be prepared. Finally, this study can provide a systematic approach to make the emergency plan for reducing economical and personal losses.

A Brief Review of the Legal Definition of Chemical Accident under the Current Chemical Substances Control Act (화학물질관리법상 화학사고 정의에 관한 소고)

  • Jihoon Park;Seon-Oh Park;Hyojin Park;Hye-Ok Kwon
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.4
    • /
    • pp.179-182
    • /
    • 2023
  • The Chemical Substances Control Act has been legislated to counter the risks posed by chemical substances to public health and the environment, but a number of small- and large-scaled incidents related to hazardous chemicals continue to occur every year. The Korean Ministry of Environment takes legal responsibility for prevention, preparedness, and response to nationwide chemical accidents under the Chemical Substances Control Act. The determination of chemical accidents that occur during hazardous chemical handling processes is based on the Article 2 (Definitions) of the law and the administrative criteria for judgement of chemical accidents. However, there are certain ambiguities in the scientific basis for determining chemical accidents under the current regulations. Whether or not a chemical accident has a direct influence on penalties and administrative measures for a workplace where an accident occurred, it is necessary to find reasonable criteria for determining chemical accident based on legal and scientific evidence.

Oil Spill Response System using Server-client GIS

  • Kim, Hye-Jin;Lee, Moon-Jin;Oh, Se-Woong
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.735-740
    • /
    • 2011
  • It is necessary to develop the one stop system in order to protect our marine environment rapidly from oil spill accident. The purpose of this study is to develop real time database for oil spill prediction modeling and implement real time prediction modelling with ESI and server-client GIS based user interface. The existing oil spill prediction model cannot provide one stop information system for public and government who should protect sea from oil spill accident. The development of multi user based information system permits integrated handling of real time meteorological data from external ftp. A server-client GIS based model is integrated on the basis of real time database and ESI map to provide the result of the oil spill prediction model. End users can access through the client interface and request analysis such as oil spill prediction and GIS functions on the network as their own purpose.

The Research on the Real-time Emergency Response Plan for the Company based on Consequence Analysis for Chemical Accidents (화학사고 발생 시 피해예측 모델과 연계된 사업장의 실시간 비상대응 체계에 관한 연구)

  • Jun Ho Ha;Chang Jun Lee
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.28-37
    • /
    • 2024
  • The recent surge in the production and handling of hazardous materials in Korea necessitates developing and implementing robust emergency response plans. These plans are crucial in safeguarding the well-being of workers and residents in the event of an incident. The consequence analysis methodology outlined in the KOSHA guidelines provides a foundation for designing emergency response plans in the event of chemical accidents. However, the consequence analysis is evaluated based on assumed accident cases or worst-case scenarios. Consequently, the emergency response plan based on the consequence analysis may overestimate the damage area, complicating rescue efforts and unnecessarily increasing costs. More information and parameters become available after an accident, enabling more accurate consequence analysis. This implies that the results of consequence analysis based on this detailed information provide more realistic results than those based on assumed accidents. This study attempts to optimize the resource allocation and cost-effectiveness of emergency response plans for chemical accidents. Existing procedures and manuals are revised to elucidate the proposed model and conduct real-time consequence analysis. The existing emergency response plan is compared to verify the proposed model's efficacy. The obtained results indicate that the proposed model can exhibit better performance.

Simulation of Water Pollution Accident with Water Quality Model (수질모형을 이용한 수질오염사고의 모의분석)

  • Choi, Hyun Gu;Park, Jun Hyung;Han, Kun Yeun
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.3
    • /
    • pp.177-186
    • /
    • 2014
  • Depending on the change of lifestyle and the improvement of people's living standards and rapid industrialization, urbanization of recent, demand for water is increasing rapidly. So emissions of domestic wastewater and various industrial waste water has increased, and water quality is worsening day by day. Therefore, in order to provide a measure against the occurrence of water pollution accident, this study was tried to simulate water pollution accident. This study simulated 2008 Gimcheon phenol accident using 1,2-D model, and analyze scenario for prevent of water pollution accident. Consequently the developed 1-D model presents high reappearance when compared with 2-D model, and has been able to obtain results in a short simulation run time. This study will contribute to the water pollution incident response prediction system and water quality analysis in the future.