• Title/Summary/Keyword: Accident locations

Search Result 125, Processing Time 0.021 seconds

SATELLITE MONITORING OF OIL POLLUTION IN THE EUROPEAN SEAS

  • Kostianoy, Andrey G.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.977-980
    • /
    • 2006
  • Ships and industries damage the delicate coastal ecosystem in many parts of the world by releasing oil or pollutants into rivers, coastal and offshore waters. After a tanker accident the biggest problem is to get a clear idea of the extent of the oil slick and predict the way it will move. For natural and man-made oil spills it is necessary to operate a regular and operational monitoring. In the Mediterranean, North and Baltic seas aircrafts or ships normally carry it out. This is expensive and is constrained by the limited availability of these resources, borders between countries, daylight hours, good weather conditions, etc. Satellite imagery can help greatly identifying probable spills over large areas and then guiding aerial surveys for precise observation of specific locations. The Synthetic Aperture Radar (SAR) instrument, which can collect data almost independently of weather and light conditions, is an excellent tool to monitor and detect oil on water surfaces. SAR is currently on board the ENVISAT, ERS-2 and RADARSAT satellites. The application of this technology to the investigation of oil pollution in the Caspian, Black, Mediterranean, North and Baltic seas is shown.

  • PDF

Assessment of steel components and reinforced concrete structures under steam explosion conditions

  • Kim, Seung Hyun;Chang, Yoon-Suk;Cho, Yong-Jin
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.337-350
    • /
    • 2016
  • Even though extensive researches have been performed for steam explosion due to their complex mechanisms and inherent uncertainties, establishment of severe accident management guidelines and strategies is one of state-of-the arts in nuclear industry. The goal of this research is primarily to examine effects of vessel failure modes and locations on nuclear facilities under typical steam explosion conditions. Both discrete and integrated models were employed from the viewpoint of structural integrity assessment of steel components and evaluation of the cracking and crushing in reinforced concrete structures. Thereafter, comparison of systematic analysis results was performed; despite the vessel failure modes were dominant, resulting maximum stresses at the all steel components were sufficiently lower than the corresponding yield strengths. Two failure criteria for the reinforced concrete structures such as the limiting failure ratio of concrete and the limiting strains for rebar and liner plate were satisfied under steam explosion conditions. Moreover, stresses of steel components and reinforced concrete structures were reduced with maximum difference of 12% when the integrated model was adopted comparing to those of discrete models.

An Experimental Investigation on Fire Characteristics of Light Oil & Methanol for Spilled Surface (경유와 메탄올의 유출표면에 따른 화재특성에 관한 실험적 고찰)

  • Lee, Jung-Yon;Jung, Ki-Chang;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.103-108
    • /
    • 2010
  • In this study, tank truck incidents of road transport of hazardous materials to experimental investigated the potential fire hazard. Real scale fire was to perform experiments for on this qualitative and quantitative data collection and analysis. Particularly affected by radiant heat from the flames caused and damage estimates range investigated accordingly. Flame temperature, internal temperature of tank and emitted radiation from the flames was investigated. The flame of light oil spill caused a fire at a temperature of about $300^{\circ}C$ high in comparison with the methanol by combustion of diesel and methanol, according to the difference, the flame duration changes varies depending on the Burning rate, amount of radiant heat flux from light oil fire was 4 times increases compared with fire of methanol. Depending on spill locations(kinds of road surfaces, absorbing rate) and the longer the duration of the flame important factors for the internal temperature of tank truck rise was found. Dirt roads than paved road accident in a fire caused by leakage of hazardous was could the higher the damaged. Therefor, Fire suppression activities should be required in particular to be around.

Enhancement of Downward-Facing Saturated Boiling Heat Transfer by the Cold Spray Technique

  • Sohag, Faruk A.;Beck, Faith R.;Mohanta, Lokanath;Cheung, Fan-Bill;Segall, Albert E.;Eden, Timothy J.;Potter, John K.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.124-133
    • /
    • 2017
  • In-vessel retention by passive external reactor vessel cooling under severe accident conditions is a viable approach for retention of radioactive core melt within the reactor vessel. In this study, a new and versatile coating technique known as "cold spray" that can readily be applied to operating and advanced reactors was developed to form a microporous coating on the outer surface of a simulated reactor lower head. Quenching experiments were performed under simulated in-vessel retention by passive external reactor vessel cooling conditions using test vessels with and without cold spray coatings. Quantitative measurements show that for all angular locations on the vessel outer surface, the local critical heat flux (CHF) values for the coated vessel were consistently higher than the corresponding CHF values for the bare vessel. However, it was also observed for both coated and uncoated surfaces that the local rate of boiling and local CHF limit vary appreciably along the outer surface of the test vessel. Nonetheless, results of this intriguing study clearly show that the use of cold spray coatings could enhance the local CHF limit for downward-facing boiling by > 88%.

A Study on the Effect of Damages on the Conditions of Dike in the Leakage of Hydrochloric Acid Storage Tank (염산 저장탱크 누출 시 방류벽 조건에 따른 피해영향 연구)

  • Kang, Jungchun;Kim, Seungha;Kim, KyuHwan;Kim, YeonSoo;Kwon, Donguk
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.7-12
    • /
    • 2018
  • Hydrochloric acid is a highly corrosive toxic substance and requires proper safety to minimize damage in case of leakage. Among the various risk-reduction facilities, the dike is a typical safety facility installed to protect the surrounding buildings and facilities by preventing the external spread of hazardous materials from the storage tank. In this study, the KORA program was used to assume leakage accident of hydrochloric acid storage tank. At this time, the extent of the damage effects of ERPG-2 were assessed for each of the three separation distance between the storage tank and the dike. The study found that the smaller the separation distance between the dike and the storage tank, the smaller the extent of damage caused by hydrochloric acid leakage, and the greater the impact of indoor conditions under the same conditions. Through this process, we are going to assist in selecting locations and installing facilities for new and existing businesses.

Improvement Plan for Prevention Regulations to Improve Hazardous Material Safety Management

  • Seongju Oh;Jaewook Lee;Hasung Kong
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.346-357
    • /
    • 2023
  • The purpose of this study is to suggest improvement plans for prevention regulations by reflecting the toxicity, fire and explosion effects of hazardous materials factories and surrounding areas using an off-site consequence assessment program. Regarding the effects of the hydrogen cyanide leak accident, which is the 1st petroleum of the 4th class flammable liquid, Areal Locations of Hazardous Atmospheres (ALOHA) program was used to compare and analyze the extent of damage effects for toxicity, overpressure, and radiation. As a result, the toxicity was analyzed to exceed 5km in the area with Acute exposure guideline level (AEGL)-2 concentration or higher, the overpressure was 103m in the range of 1 psi or more, and the radiant heat was analyzed to be 724m in the range of 2kw/m2 or more. Toxicity and radiation affected the area outside the hazardous material storage area, but the overpressure was limited to the inside of the hazardous material storage area. Therefore, we propose to improve the safety management of hazardous materials by conducting a risk assessment for hazardous materials and reflecting the results in internal and external emergency response plans to prepare prevention regulations.

Insights for Improving Road Safety : Focusing on Vehicle Accidents in Daegu Metropolitan City

  • Mee Qi Siow;Yang Sok Kim;Mi Jin Noh;Choong Kwon Lee;Sang Ill Moon;Jae Ho Shin
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.95-102
    • /
    • 2023
  • Road accidents not only caused loss of human lives but also costed 3% of gross domestic product in most of the countries. The road accidents pose significant challenges to public safety and urban transportation management. There is a need to identify the high-risk area of accidents along with the critical day of week and vulnerable time period in order to implement effective preventive measures and optimizing the resource allocation. We collected 5,012 accident data from 대구교통종합정보. This study identified the high-risk locations, days of week, and time periods for accidents in Daegu and estimated the conditional probabilities of accidents occurring based on combinations of location, day of the week, and time period. The result is visualized in the form of dashboard in Tableau. This study holds substantial practical significance for urban planners, transportation authorities, and policymakers in Daegu to strategically allocate resources for traffic management, law enforcement, and targeted safety campaigns.

Fracture mechanics analysis of multipurpose canister for spent nuclear fuels under horizontal/oblique drop accidents

  • Jae-Yoon Jeong;Cheol-Ho Kim;Hune-Tae Kim;Ji-Hye Kim;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4647-4658
    • /
    • 2023
  • In this paper, elastic-plastic fracture mechanics analysis is performed to determine the critical crack sizes of the multipurpose canister (MPC) manufactured using austenitic stainless steel under dynamic loading conditions that simulate drop accidents. Firstly, dynamic finite element (FE) analysis is performed using Abaqus v.2018 with the KORAD (Korea Radioactive Waste Agency)-21 model under two drop accident conditions. Through the FE analysis, critical locations and through-thickness stress distributions in the MPC are identified, where the maximum plastic strain occurs during impact loadings. Then, the evaluation using the failure assessment diagram (FAD) is performed by postulating an external surface crack at the critical location to determine the critical crack depth. It is found that, for the drop cases considered in this paper, the principal failure mechanism for the circumferential surface crack is found to be the plastic collapse due to dominant high bending axial stress in the thickness. For axial cracks, the plastic collapse is also the dominant failure mechanism due to high membrane hoop stress, followed by the ductile tearing analysis. When incorporating the strain rate effect on yield strength and fracture toughness, the critical crack depth increases from 10 to 20%.

A Study on the Development of the Korea safety ladders(K-Ladder) (한국형 안전 사다리(K-사다리) 개발에 관한 연구)

  • Gi Yeol Lee;Kyung Boo Chang;Jong Moon Hwang
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.44-53
    • /
    • 2024
  • In addition to being used for ascending and descending to work locations, portable ladders are widely used as a substitute for work platforms when working at heights in homes and industrial sites. However, accidents continue to occur in industrial sites owing to structural instabilities of ladders and the negligence of safety measures by users. To prevent accidents involving workers using portable ladders, it is important to encourage workers to use them correctly through laws and regulations; however, establishing effective preventive measures that go beyond regulations can increase acceptance in industrial sites and maximize the effect of reducing industrial accidents. Therefore, this study conducts a fact-finding survey and portable safety ladder product analysis and collects stakeholder opinions to develop a Korean-style safety ladder that can replace step ladders with a high risk of accidents.

A Comparative Study On Accident Prediction Model Using Nonlinear Regression And Artificial Neural Network, Structural Equation for Rural 4-Legged Intersection (비선형 회귀분석, 인공신경망, 구조방정식을 이용한 지방부 4지 신호교차로 교통사고 예측모형 성능 비교 연구)

  • Oh, Ju Taek;Yun, Ilsoo;Hwang, Jeong Won;Han, Eum
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.3
    • /
    • pp.266-279
    • /
    • 2014
  • For the evaluation of roadway safety, diverse methods, including before-after studies, simple comparison using historic traffic accident data, methods based on experts' opinion or literature, have been applied. Especially, many research efforts have developed traffic accident prediction models in order to identify critical elements causing accidents and evaluate the level of safety. A traffic accident prediction model must secure predictability and transferability. By acquiring the predictability, the model can increase the accuracy in predicting the frequency of accidents qualitatively and quantitatively. By guaranteeing the transferability, the model can be used for other locations with acceptable accuracy. To this end, traffic accident prediction models using non-linear regression, artificial neural network, and structural equation were developed in this study. The predictability and transferability of three models were compared using a model development data set collected from 90 signalized intersections and a model validation data set from other 33 signalized intersections based on mean absolute deviation and mean squared prediction error. As a result of the comparison using the model development data set, the artificial neural network showed the highest predictability. However, the non-linear regression model was found out to be most appropriate in the comparison using the model validation data set. Conclusively, the artificial neural network has a strong ability in representing the relationship between the frequency of traffic accidents and traffic and road design elements. However, the predictability of the artificial neural network significantly decreased when the artificial neural network was applied to a new data which was not used in the model developing.