• Title/Summary/Keyword: Access Channel

Search Result 1,520, Processing Time 0.026 seconds

Opportunistic Spectrum Access Based on a Constrained Multi-Armed Bandit Formulation

  • Ai, Jing;Abouzeid, Alhussein A.
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.134-147
    • /
    • 2009
  • Tracking and exploiting instantaneous spectrum opportunities are fundamental challenges in opportunistic spectrum access (OSA) in presence of the bursty traffic of primary users and the limited spectrum sensing capability of secondary users. In order to take advantage of the history of spectrum sensing and access decisions, a sequential decision framework is widely used to design optimal policies. However, many existing schemes, based on a partially observed Markov decision process (POMDP) framework, reveal that optimal policies are non-stationary in nature which renders them difficult to calculate and implement. Therefore, this work pursues stationary OSA policies, which are thereby efficient yet low-complexity, while still incorporating many practical factors, such as spectrum sensing errors and a priori unknown statistical spectrum knowledge. First, with an approximation on channel evolution, OSA is formulated in a multi-armed bandit (MAB) framework. As a result, the optimal policy is specified by the wellknown Gittins index rule, where the channel with the largest Gittins index is always selected. Then, closed-form formulas are derived for the Gittins indices with tunable approximation, and the design of a reinforcement learning algorithm is presented for calculating the Gittins indices, depending on whether the Markovian channel parameters are available a priori or not. Finally, the superiority of the scheme is presented via extensive experiments compared to other existing schemes in terms of the quality of policies and optimality.

DSSS-Based Channel Access Technique DS-CDMA for Underwater Acoustic Transmission

  • Lee, Young-Pil;Moon, Yong Seon;Ko, Nak Yong;Choi, Hyun-Taek;Huang, Linyun;Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.53-59
    • /
    • 2015
  • This paper proposes a novel method for acoustically and wirelessly transmitting data underwater with a high transmission rate. The method uses the most promising physical layer and multiple access technique (i.e., the code division multiple channel access technique) to divide the channel into subchannels. Data is transmitted through these subchannels. The codes are pseudo-random noise (PN) sequences. In the spread-spectrum technique, a signal such as electrical, electromagnetic, acoustic signal generated in a particular bandwidth is deliberately spread in the frequency domain, which results in a signal with a wider bandwidth. This paper reviews the possibility of application of the direct-sequence code division multiple access (DS-CDMA) technique in an underwater system using MATLAB. As the result of our review, we recognize that the DS-CDMA technique can be applied to underwater environments.

Opportunistic Spectrum Access with Dynamic Users: Directional Graphical Game and Stochastic Learning

  • Zhang, Yuli;Xu, Yuhua;Wu, Qihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5820-5834
    • /
    • 2017
  • This paper investigates the channel selection problem with dynamic users and the asymmetric interference relation in distributed opportunistic spectrum access systems. Since users transmitting data are based on their traffic demands, they dynamically compete for the channel occupation. Moreover, the heterogeneous interference range leads to asymmetric interference relation. The dynamic users and asymmetric interference relation bring about new challenges such as dynamic random systems and poor fairness. In this article, we will focus on maximizing the tradeoff between the achievable utility and access cost of each user, formulate the channel selection problem as a directional graphical game and prove it as an exact potential game presenting at least one pure Nash equilibrium point. We show that the best NE point maximizes both the personal and system utility, and employ the stochastic learning approach algorithm for achieving the best NE point. Simulation results show that the algorithm converges, presents near-optimal performance and good fairness, and the directional graphical model improves the systems throughput performance in different asymmetric level systems.

Channel Selective Relay-based Multiple-Input SC-FDMA/OFDMA Transmission System (채널 선택형 릴레이 기반 다중 입력 SC-FDMA/OFDMA 전송 시스템)

  • Won, Hui-Chul;Kim, Soon-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.1-9
    • /
    • 2009
  • Relay-assisted multiple input technique has become a promising candidate for next generation broadband wireless communications. In this paper, we propose channel selective relay-based multiple input transmission system. In the proposed system, single carrier frequency division multiple access (SC-FDMA) and orthogonal frequency division multiple access (OFDMA) are adopted for uplink and downlink transmissions, respectively. The performance of relay-based system can be improved by using the subcarriers selectively based on the channel condition between relay station (RS) and mobile station, or between RS and base station. Simulation results show that the proposed relay-based system considerably outperforms the conventional relay-based system.

A Novel Multi-channel MAC Protocol for Ad hoc Networks

  • Dang, Duc Ngoc Minh;Quang, Nguyen Tran;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.187-189
    • /
    • 2012
  • The medium access control (MAC) protocol is designed only for single channel in the IEEE 802.11 standard. That means the throughput of the network is limited by the bandwidth of the single channel. The multiple channels can be exploited to get more concurrent transmission. In this paper, we propose a novel Multi-channel MAC that utilizes the channel more efficiently than other Multi-channel MAC protocols.

A Study on the Data Transmission of Multiple Sensor Using Code Division Multiple Access (코드분할다중접속을 이용한 다중센서 데이터 전송에 관한 연구)

  • Mun, Se-Sang;Park, Woo-Il;Kim, Woo-Shik;Cho, Hyang-Duck
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1093-1099
    • /
    • 2006
  • In general, a measuring instrument of sound noise use only one wired channel by one sensor. Therefor the measuring instrument use wired cables as the number of channels are provided by instrument. In a point of observed target it needs data from multiple sensors and In case of measured point is a large numbers the environment of constitution would be complicated because that is in need of channel and cable. So we need the method that can improve the existing transmission channel and cable environment even the measured point is increased. If we use the Code Division Multiple Access(CDMA) we transmit a large numbers of sensor data by using a common transmission channel. We present the method that transmits data of multiple sensor to wireless by using CDMA. This method can simplify the measurement environment dramatically when collecting data by using multiple sensor. We expect this study to contribute the part of multiple access technology and relation technologies on the measuring environment.

Closed-Loop Power Control for Code Division Multiple Access in Time-Varying Underwater Acoustic Channel (시변 수중 음향 채널에서 코드 분할 다중 접속 방식의 폐루프 전력 제어 기법)

  • Seo, Bo-Min;Cho, Ho-Shin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.32-40
    • /
    • 2015
  • Code division multiple access (CDMA) is one of the promising medium access control scheme for underwater acoustic sensor networks due to its beneficial features such as robustness against frequency-selective fading and high frequency-reuse efficiency. In this paper, we design a closed-loop power control scheme for the underwater CDMA, to adapt time-varying acoustic channel. In the proposed scheme, sink node sends to sensor nodes the associated path loss which is acquired by uplink-channel analysis based on received packets from the sensor nodes. Then, sensor nodes adjust their transmission power in an adaptive manner to time-varying underwater acoustic channel, according to the informations sent by the sink node.

Dynamic Channel Assignment Scheme Using Graph Coloring in Femtocell Networks (펨토셀 네트워크에서 그래프 컬러링을 이용한 동적채널할당 방법)

  • Kim, Se-Jin;Cho, IlKwon;Kim, Yi-Kang;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.4
    • /
    • pp.257-265
    • /
    • 2013
  • In this paper, we proposed a Dynamic Channel Assignment (DCA) scheme called Graph Coloring based DCA (GC-DCA) to improve system performance for downlink femtocell networks with high density femto Access Point (AP) deployments. The proposed scheme consists of two steps: one is a femto AP grouping step considering interference and the other is a DCA step considering Signal to Interference plus Noise Ratio (SINR) for femto User Equipments (UEs). Simulation results show that the proposed GC-DCA outperforms other schemes in terms of the mean femto UE capacity and probability of femto UEs which have capacities less than a given transmit rate.

A Study on the data transmission of multiple sensor using code division multiple access (코드분할다중접속을 이용한 다중센서 데이터 전송에 관한 연구)

  • Cho, Hyang-Duck;Mun, Se-Sang;Park, Woo-Il;Kim, Woo-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.133-137
    • /
    • 2006
  • In general, a measuring instrument of sound noise use only one wired channel by one sensor. Therefor the measuring instrument use wired cables as the number of channels are provided by instrument. In a point of observed target it needs data from multiple sensors and In case of measured point is a large numbers the environment of constitution would be complicated because that is in need of channel and cable. So we need the method that can improve the existing transmission channel and cable environment even the measured point is increased. If we use the Code Division Multiple Access(CDMA) we transmit a large numbers of sensor data by using a common transmission channel. We present the method that transmits data of multiple sensor to wireless by using CDMA. This method can simplify the measurement environment dramatically when collecting data by using multiple sensor. We expect this study to contribute the part of multiple access technology and relation technologies on the measuring environment.

  • PDF

Scheduling Methods for Multi-User Optical Wireless Asymmetrically-Clipped OFDM

  • Wilson, Sarah Kate;Holliday, Joanne
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.655-663
    • /
    • 2011
  • Diffuse optical wireless (DOW) systems have the advantage that they do not require point-to-point siting so one transmitter can communicate with several receivers. In this paper, we investigate multiple access scheduling methods for downlink orthogonal frequency division multiplexing (OFDM) in diffuse optical wireless networks. Unlike the radio frequency (RF) channel, the DOW channel has low-pass filter characteristics and so requires different scheduling methods than those developed for the RF channel. Multi-user diversity orthogonal frequency division multiple access (OFDMA) systems nominate a cluster of subcarriers with the largest signal-to-noise-ratio for transmission. However, in a DOW channel, most users would choose the lowest frequency clusters of subcarriers. To remedy this problem, we make two proposals. The first is to use a variable cluster size across the subcarriers; the lower frequency clusters will have fewer subcarriers while the higher frequency clusters will have more subcarriers. This will equalize the capacity of the clusters. The second proposal is to randomize a user's cluster selection from a group of clusters satisfying a minimum threshold. Through simulation it is shown that combining these strategies can increase the throughput while ensuring a fair distribution of the available spectrum.