• Title/Summary/Keyword: Acceleration performance

Search Result 1,644, Processing Time 0.03 seconds

An Anti-Sway Control System Design Based on Simultaneous Optimization Design Approach (동시최적화 설계기법을 이용한 항만용 크레인의 흔들림 제어계 설계)

  • Kim, Young-Bok;Moon, Duk-Hong;Yang, Joo-Ho;Chae, Gyu-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.66-73
    • /
    • 2005
  • The sway motion control problem of a container hanging on the trolley is considered in this paper. In the container crane control problem, the main issue involves suppressing the residual swing motion of the container at the end of acceleration, during deceleration, or for an unexpected disturbance input. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system, in which a small auxiliary mass is installed on the spreader. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. In many studies, the controllers used to suppress the vibration have been synthesized for the given mathematical model of plants. In many cases, the designers have not been able to utilize the degree of freedom to adjust the structural parameters for the control object. To overcome this problem, so called "Structure/Control Simultaneous Method" is used. From this, in this paper the simultaneous design method is used to achieve optimal system performance. And the experimental result shows that the proposed control strategy is useful, to the case of that the controlled system is exposed to the uncertainties and, robust to disturbances like wind.

The Physical Properties Variation of Grout Materials and Improvement of Grouting Effects on Application of High Performance Injection Equipment (고성능 주입장비의 적용에 따른 주입재의 물성변화 및 주입효과 증진에 관한 연구)

  • 천병식;김진춘;김백영
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.179-190
    • /
    • 2003
  • The grout based on solution type makes it difficult to get the improvement of ground strength and the effefct of water curtain because it has lower strength and durability than suspension type. Nowadays, the technology of particle acceleration, that enhance the material permeability, such as grout based on solution type, and inexpensive grout, is being required. For these reasons, in this study, using wet milling system, we evaluated physical properties of manufactured factors such as water-cement ratio of particles before being milled, optimum milling capacity by controlling milling time and rpm, viscosity of materials, permeation coefficient, and unconfined compressive strength. Also, using micro wet milling apparatus which could manufacture ordinary Portland cement and high speed shear mix which could forcefully separate conglomerate particles in situ, we performed electrical resistivity investigation and falling head permeability tests to analyze differences of grouting effects. From these results, we found that the permeability of the applied equipment was much superior, and in the case of using high speed shear mixer, particles of grout material were well separated.

Experimental Study on Seismic Performance Evaluation of Lake Dike Structures under Earthquake Loading (지진하중에 의한 방수제 구조물의 내진성능 평가를 위한 실험적 연구)

  • Shin, Eun-Chul;Kang, Hyeon-Hoe;Kim, Tae-Jin;Chae, Young-Su;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.53-62
    • /
    • 2011
  • This paper presents the characteristics behavior of dike structure and foundation ground through the shaking table model test. The vibration loadings of design earthquake acceleration of 0.154g was applied to this laboratory model test regarding on dike structure and foundation ground under the structure. The model was formulated with 1/100 design of representative cross section for evaluating the effectiveness of vibration. Based on the test results, we can analysis the behavior of lateral displacement and settlement characteristics of structure under the earthquake loading. The pore water pressure was also monitored in the upper, middle and lower layers of ground. Finally, the actual displacements and pore water pressure of the structure can be predicted by using the results of the laboratory shaking table test.

The influence of different factors on buildings' height in the absence of shear walls in low seismic regions

  • Keihani, Reza;Bahadori-Jahromi, Ali;Goodchild, Charles;Cashell, Katherine A.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.83-99
    • /
    • 2020
  • Shear walls are structural members in buildings that are used extensively in reinforced concrete frame buildings, and almost exclusively in the UK, regardless of whether or not they are actually required. In recent years, the UK construction industry, led by the Concrete Centre, has questioned the need for such structural elements in low to mid-rise reinforced concrete frame buildings. In this context, a typical modern, 5-storey residential building is studied, and its existing shear walls are replaced with columns as used elsewhere in the building. The aim is to investigate the impact of several design variables, including concrete grade, column size, column shape and slab thickness, on the building's structural performance, considering two punching shear limits (VEd/VRd,c), lateral drift and accelerations, to evaluate its maximum possible height under wind actions without the inclusion of shear walls. To facilitate this study, a numerical model has been developed using the ETABS software. The results demonstrate that the building examined does not require shear walls in the design and has no lateral displacement or acceleration issues. In fact, with further analysis, it is shown that a similar building could be constructed up to 13 and 16 storeys high for 2 and 2.5 punching shear ratios (VEd/VRd,c), respectively, with adequate serviceability and strength, without the need for shear walls, albeit with thicker columns.

Generic optimization, energy analysis, and seismic response study for MSCSS with rubber bearings

  • Fan, Buqiao;Zhang, Xun'an;Abdulhadi, Mustapha;Wang, Zhihao
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.347-359
    • /
    • 2020
  • The Mega-Sub Controlled Structure System (MSCSS), an innovative vibration passive control system for building structures, is improved by adding lead rubber bearings (LRBs) on top of the substructure. For the new system, a genetic algorithm is used to optimize the dynamic parameters and distributions of dampers and LRBs. The program uses various seismic performance indicators as optimization objectives, and corresponding results are compared. It is found that the optimization procedure for maximizing the energy dissipation ratio yields the best solutions, and optimized models have consistent seismic performances under different earthquakes. Seismic performances of optimized MSCSS models with and without LRBs, as well as the traditional Mega-Sub Structure model, are evaluated and compared under El Centro wave, Taft wave and 20 other artificial waves. In both elastic and plastic analysis, the model with LRBs shows significantly smaller story drift and horizontal acceleration than those of the other two models, and fewer plastic hinges are developed during severe earthquakes. Energy analysis also shows that LRBs installed in proper locations increase the deformation and energy dissipation of dampers, thereby significantly reduce the kinetic, potential, and hysteretic energy in the structure. However, LRBs do not have to be mounted on all the additional columns. It is also demonstrated that LRBs at unfavorable locations can decrease the energy dissipation for dampers. After LRBs are installed, the optimal damping coefficient and the optimal damping exponent of dampers are reduced to produce the best damping effect.

Design and Implementation of 10 Giga VPN Acceleration Board (10 Giga급 VPN 가속보드 설계 및 구현)

  • 김기현;한종욱
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.661-664
    • /
    • 2003
  • Trade-off of sorority and speed always exists in the latest network environment. Recently, developed security processors is improved very performance, and sorority connection algorithms of a lot of part were embodied by hardware. This high speed security processor is essential ingredient in string network security solution equipment development that require very big band width. In this paper, we wish to describe about design and implementation of 10 Giga VPN equipments. In this system, embodied 10 Giga to use Cavium company's Nitrox-II processor, and supports two SP14-2 interface and PCI interface. All of the password algorithm that password algorithm that support is used in common use VPN equipment for compatibility with common use VPN equipment are supported and support SEED algorithm developed in domestic. Designed to support IPsec and SSL protocol, and supports all of In-Line structure that is profitable in high speed transaction and the Look-Aside structure that is profitable in practical use degree of NPU(Network Processor Unit).

  • PDF

Development of KAU Mechanical Lunar Simulants and Drop Test of Lunar Landing Gears (KAU 기계적 달 복제토 개발 및 달착륙선 착륙장치의 낙하시험)

  • Yoo, Seok-Ho;Kim, Hyun-Duk;Lim, Jae Hyuk;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1037-1044
    • /
    • 2014
  • In this study, we designed a drop test system considering lunar surface environment and tested landing gear of experimental lunar lander. The lunar lander would be landed at soil place for soft landing. When the lunar lander touches down, the acceleration of the lander is largely affected by mechanical characteristics of the lunar soil. Accordingly, a drop test using lunar soil is needed to verify the performance of the lunar landing gear. Because the lunar soil is not available generally, we developed a lunar simulant KAUMLS(Korea Aerospace University Mechanical Luna Simulant) based on mechanical properties of the lunar soil of NASA's LUNA PROJECT. In addition, drop tests on steel plate and dry sand are performed to evaluate impact characteristics by the surface environment.

Position Controller for Clutch Drive System of PHEV(Plug in Hybrid Electric Vehicle) (PHEV(Plug in Hybrid Electric Vehicle)의 클러치 구동 시스템을 위한 BLDC 모터의 위치제어기)

  • Jin, Yong-Sin;Shin, Hee-Keun;Kim, Hag-Wone;Mok, Hyung-Soo;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.166-173
    • /
    • 2012
  • Plug-in Hybrid Electric Vehicle is driven by the engine, the primary traction motor, and the secondary auxiliary motor generating the electric power for battery charging. Secondary auxiliary motor should be connected to the engine or separated from the engine by the clutch system. This paper presents the position controller of the BLDC motor for the clutch system of Plug-in Hybrid Electric Vehicle. The BLDC motor can be applied to the clutch system in spite of it's low accuracy of the position control due to high gear ratio between the clutch and the motor. Since the attachment and the detachment between the motor and the engine should be carried out within 0.3 seconds, the position controller with fast acceleration and deceleration is implemented. For the torque control with braking operation for the BLDC motor, the modified bipolar PWM method with low current ripple compared to the conventional unipolar PWM is presented. The position control performance of the BLDC motor for the clutch system is verified through the simulation and experiments.

Real-time Activity and Posture Recognition with Combined Acceleration Sensor Data from Smartphone and Wearable Device (스마트폰과 웨어러블 가속도 센서를 혼합 처리한 실시간 행위 및 자세인지 기법)

  • Lee, Hosung;Lee, Sungyoung
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.8
    • /
    • pp.586-597
    • /
    • 2014
  • The next generation mobile computing technology is recently attracting attention that smartphone and wearable device imbedded with various sensors are being deployed in the world. Existing activity and posture recognition research can be divided into two different ways considering feature of one's movement. While activity recognition focuses on catching distinct pattern according to continuous movement, posture recognition focuses on sudden change of posture and body orientation. There is a lack of research constructing a system mixing two separate patterns which could be applied in real world. In this paper, we propose a method to use both smartphone and wearable device to recognize activity and posture in the same time. To use smartphone and wearable sensor data together, we designed a pre-processing method and constructed recognition model mixing signal vector magnitude and orientation pattern features of vertical and horizontal. We considered cycling, fast/slow walking and running activities, and postures such as standing, sitting, and laying down. We confirmed the performance and validity by experiment, and proved the feasibility in real world.

Kalman Filter-based Data Recovery in Wireless Smart Sensor Network for Infrastructure Monitoring (구조물 모니터링을 위한 무선 스마트 센서 네트워크의 칼만 필터 기반 데이터 복구)

  • Kim, Eun-Jin;Park, Jong-Woong;Sim, Sung-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.42-48
    • /
    • 2016
  • Extensive research effort has been made during the last decade to utilize wireless smart sensors for evaluating and monitoring structural integrity of civil engineering structures. The wireless smart sensor commonly has sensing and embedded computation capabilities as well as wireless communication that provide strong potential to overcome shortcomings of traditional wired sensor systems such as high equipment and installation cost. However, sensor malfunctioning particularly in case of long-term monitoring and unreliable wireless communication in harsh environment are the critical issues that should be properly tackled for a wider adoption of wireless smart sensors in practice. This study presents a wireless smart sensor network(WSSN) that can estimate unmeasured responses for the purpose of data recovery at unresponsive sensor nodes. A software program that runs on WSSN is developed to estimate the unmeasured responses from the measured using the Kalman filter. The performance of the developed network software is experimentally verified by estimating unmeasured acceleration responses using a simply-supported beam.