• 제목/요약/키워드: Acceleration modeling

검색결과 290건 처리시간 0.022초

감쇠비를 고려한 가속도 신호의 프랙탈 해석 (Fractal analysis of acceleration signal considering damping)

  • 윤문철
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.157-162
    • /
    • 2013
  • To analyze the dynamic acceleration characteristics, it is necessary to identify the acceleration model using some methods that can represent the dynamic properties well. In this sense, fractal methods were used for the verification of characteristics of an acceleration signal. To estimate and analyze the geometry of acceleration signal, a fractal interpolation and its analysis was introduced in this paper. The chaotic nature of acceleration signal was considered in fractal modeling. In this study the fractal signal modeling has brought a focus within the scope of the fractal interpolation and fractal dimension. And a new idea of fractal dimension has been introduced and discussed considering the damping ratio and amplitude for its dynamic properties of the signal. The fractal dimension of acceleration with respect to the scaling factor using fixed data points of 1000 points was calculated and discussed. The acceleration behaviors of this results show some different characteristics. And this fractal analysis can be applied to other signal analysis of several machining such as pendulum type grinding and milling which has many dynamic properties in the signal.

IMU 기반 자세 추정 칼만필터에서 공분산 모델링이 추정 정확도에 미치는 영향 (Effects of Covariance Modeling on Estimation Accuracy in an IMU-based Attitude Estimation Kalman Filter)

  • 최지석;이정근
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.440-446
    • /
    • 2020
  • A well-known difficulty in attitude estimation based on inertial measurement unit (IMU) signals is the occurrence of external acceleration under dynamic motion conditions, as the acceleration significantly degrades the estimation accuracy. Lee et al. (2012) designed a Kalman filter (KF) that could effectively deal with the acceleration issue. Ahmed and Tahir (2017) modified this method by adjusting the acceleration-related covariance matrix because they considered covariance modeling as a pivotal factor in the estimation accuracy. This study investigates the effects of covariance modeling on estimation accuracy in an IMU-based attitude estimation KF. The method proposed by Ahmed and Tahir can be divided into two: one uses the covariance including only diagonal components and the other uses the covariance including both diagonal and off-diagonal components. This paper compares these three methods with respect to the motion condition and the window size, which is required for the methods by Ahmed and Tahir. Experimental results showed that the method proposed by Lee et al. performed the best among the three methods under relatively slow motion conditions, whereas the modified method using the diagonal covariance with a high window size performed the best under relatively fast motion conditions.

자율주행자동차 가속/제동시스템의 실험적 모델링 (Experimental Modeling of Acceleration and Brake Systems for Autonomous Vehicle)

  • 이종언;김영철
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.642-651
    • /
    • 2016
  • For the acceleration and brake systems of an autonomous vehicle, the dynamic models from acceleration (brake) pedal input to driving(braking) torque at the vehicle wheel are represented by a set of linear transfer functions in this paper. We present an experimental method that can identify these models using a single rectangular pulse response data. Various magnitude of inputs with different running speeds are applied to experimental tests. All the identified models are demonstrated by the measured data. Both acceleration and brake models have been also validated by comparing the velocity of a full vehicle model associated with the proposed models with the measured vehicle velocity.

MATHEMATICAL ANALYSIS USING TWO MODELING TECHNIQUES FOR DYNAMIC RESPONSES OF A STRUCTURE SUBJECTED TO A GROUND ACCELERATION TIME HISTORY

  • Kim, Yong-Woo;Jhung, Myung-Jo
    • Nuclear Engineering and Technology
    • /
    • 제43권4호
    • /
    • pp.361-374
    • /
    • 2011
  • Two types of numerical modeling techniques were considered for the dynamic response of a structure subjected to a ground acceleration. One technique is based on the equation of motion relative to ground motion, and the other is based on the equation of absolute motion of the structure and the ground. The analytic background of the former is well established while the latter has not yet been extensively verified. The latter is called a large mass method, which allocates an appropriate large mass to the ground so that it causes the ground to move according to a given acceleration time history. In this paper, through the use of a single degree-of-freedom spring-mass system, the equations of motion of the two techniques were analyzed and useful theorems are provided on the large mass method. Using simple examples, the numerical results of the two modeling techniques were compared with analytic solutions. It is shown that the theorems provide a clear insight on the large mass method.

표준실험동의 구조별 소음 진동 특성 (Noise and Vibration Characteristics of Construction structures in Standard Laboratory)

  • 정영;유승엽;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.390-393
    • /
    • 2005
  • In this study, examined heavy-weight floor impact sound to rahmen structure(steel reinforced concrete structure) and bearing-wall structure(box frame type structure) that have slab thickness of 4 form at a standard laboratory through noise and vibration measured. The results of ANSYS modeling of structures was predicted that the nature natural frequency increased according to change of thickness of each slab by finite element analysis, and acceleration value decreased. Rahmen structures compares with bearing-wall structure, nature frequency was predicted low. Measurement results of natural frequency and acceleration level for structures at a standard laboratory, tendency department such as ANSYS modeling appeared. Rahmen structures appeared that reduction effect is less in Acceleration level and heavy impact sound transmission level comparing with bearing-wall structure.

  • PDF

Health monitoring of multistoreyed shear building using parametric state space modeling

  • Medhi, Manab;Dutta, Anjan;Deb, S.K.
    • Smart Structures and Systems
    • /
    • 제4권1호
    • /
    • pp.47-66
    • /
    • 2008
  • The present work utilizes system identification technique for health monitoring of shear building, wherein Parametric State Space modeling has been adopted. The method requires input excitation to the structure and also output acceleration responses of both undamaged and damaged structure obtained from numerically simulated model. Modal parameters like eigen frequencies and eigen vectors have been extracted from the State Space model after introducing appropriate transformation. Least square technique has been utilized for the evaluation of the stiffness matrix after having obtained the modal matrix for the entire structure. Highly accurate values of stiffness of the structure could be evaluated corresponding to both the undamaged as well as damaged state of a structure, while considering noise in the simulated output response analogous to real time scenario. The damaged floor could also be located very conveniently and accurately by this adopted strategy. This method of damage detection can be applied in case of output acceleration responses recorded by sensors from the actual structure. Further, in case of even limited availability of sensors along the height of a multi-storeyed building, the methodology could yield very accurate information related to structural stiffness.

열차의 충돌가속도 크기를 평가하기 위한 방법 연구 (A Study on Techniques for Evaluating Collision Acceleration of Rollingstock)

  • 김운곤;김거영;구정서
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.233-237
    • /
    • 2009
  • In this study, we suggest that several approaches to evaluate the collision acceleration value of a car in the article 35 and the guideline 16 of Korean rolling stock safety regulation. There are various methods to evaluate collision acceleration such as; a displacement comparison method by the double integration of filtered acceleration data, a velocity comparison method by the integration of filtered acceleration data, an analysis method of time-velocity curve, or a differential method of time-velocity curve. We compared these methods one another using 1D dynamic simulation model composed of nonlinear dampers, springs and bars, and masses. Also, we applied these methods to a hybrid model, which is made of 3D shell element model and 2D collision dynamics model, in order to evaluate whether 1D force-displacement curve modeling for energy absorbing structures have an effect on the collision acceleration levels or not.

  • PDF

속도 및 각정합과 각속도 및 가속도정합에 대한 전달정렬의 특성 분석 (Performance analysis of transfer alignment for velocity & angle matching and angular rate & acceleration matching)

  • 양철관;심덕선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1860-1863
    • /
    • 1997
  • Transfer alignement is the process of initializing attitude of slave INS using the data of master INS. This paper presents the performance analysis of transfer alignment at sea using convariance analysis method. Velocity & angle matching and angular rate & acceleration matching are used for analysis, and the performance of two matching methods are compared. We propose a new method for angular rate & acceleration matching. Under the assumption of accurate modeling of ship flexure, the performance of transfer alignment time and accuray is improved very much for the new method.

  • PDF

A study on Improvement for distorted images of the Digital X-ray Scanner System based on Fuzzy Correction Algorithm

  • Baek, Jae-Ho;Kim, Kyung-Jung;Park, Mi-Gnon
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.173-176
    • /
    • 2005
  • This paper proposes a fuzzy correction algorithm that can correct the distorted medical image caused by the scanning nonlinear velocity of the Digital X-ray Scanner System (DX-Scanner) using the Multichannel Ionization Chamber (MIC). In the DX-Scanner, the scanned medical image is distorted for reasons of unsuitable integration time at the nonlinear acceleration period of the AC servo motor during the inspection of patients. The proposed algorithm finds the nonlinear motor velocity modeling through fuzzy system by clustering and reconstructs the normal medical image lines by calculating the suitable moving distance with the velocity of the motor using the modeling, acceleration time and integration time. In addition, several image processing is included in the algorithm. This algorithm analyzes exact pixel lines by comparing the distance of the acceleration period with the distance of the uniform velocity period in every integration time and is able to compensate for the velocity of the acceleration period. By applying the proposed algorithm to the test pattern for checking the image resolution, the effectiveness of this algorithm is verified. The corrected image obtained from distorted image is similar to the normal and better image for a doctor's diagnosis.

  • PDF

Modeling and assessment of VWNN for signal processing of structural systems

  • Lin, Jeng-Wen;Wu, Tzung-Han
    • Structural Engineering and Mechanics
    • /
    • 제45권1호
    • /
    • pp.53-67
    • /
    • 2013
  • This study aimed to develop a model to accurately predict the acceleration of structural systems during an earthquake. The acceleration and applied force of a structure were measured at current time step and the velocity and displacement were estimated through linear integration. These data were used as input to predict the structural acceleration at next time step. The computation tool used was the Volterra/Wiener neural network (VWNN) which contained the mathematical model to predict the acceleration. For alleviating problems of relatively large-dimensional and nonlinear systems, the VWNN model was utilized as the signal processing tool, including the Taylor series components in the input nodes of the neural network. The number of the intermediate layer nodes in the neural network model, containing the training and simulation stage, was evaluated and optimized. Discussions on the influences of the gradient descent with adaptive learning rate algorithm and the Levenberg-Marquardt algorithm, both for determining the network weights, on prediction errors were provided. During the simulation stage, different earthquake excitations were tested with the optimized settings acquired from the training stage to find out which of the algorithms would result in the smallest error, to determine a proper simulation model.