• 제목/요약/키워드: Acceleration Test

Search Result 1,536, Processing Time 0.032 seconds

Reliability Evaluation of Hydrostatic Bearing Ball Joint (정압 베어링 볼 조인트의 신뢰성 향상)

  • Jung, Dong-Soo;Park, Jong-Won
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.165-176
    • /
    • 2012
  • Hydrostatic bearing improves performance and life time of a product by avoiding solid friction and reducing viscosity friction with the help of creating pressure equilibrium between two faces doing relative motion. This study suggests failure analysis and test evaluation for a ball joint that adopts the hydrostatic bearing and introduces the entire process to improve reliability of the product by design improvement. A typical failure is growth of friction torque by solid friction, and its failure cause is determined and the improvement is proposed. Finally, reliability improvement is established by analysis of the results of before and after acceleration test.

Prediction of acceleration and impact force values of a reinforced concrete slab

  • Erdem, R. Tugrul
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.563-575
    • /
    • 2014
  • Concrete which is a composite material is frequently used in construction works. Properties and behavior of concrete are significant under the effect of different loading cases. Impact loading which is a sudden dynamic one may have destructive effects on structures. Testing apparatuses are designed to investigate the impact effect on test members. Artificial Neural Network (ANN) is a computational model that is inspired by the structure or functional aspects of biological neural networks. It can be defined as an emulation of biological neural system. In this study, impact parameters as acceleration and impact force values of a reinforced concrete slab are obtained by using a testing apparatus and essential test devices. Afterwards, ANN analysis which is used to model different physical dynamic processes depending on several variables is performed in the numerical part of the study. Finally, test and predicted results are compared and it's seen that ANN analysis is an alternative way to predict the results successfully.

Analysis and Countermeasure for Shock-proof Performance of Laptop Computers (노트북 컴퓨터의 충격성능 분석 및 대책)

  • 임경화;윤영한;안채헌;김진규;이승은
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.490-495
    • /
    • 2001
  • This paper deals with an analysis and countermeasure for improving the shock performance of laptop computers. The shock analysis is carried out by using the commercial program of LS-DYNA3D. Also the analysis is verified by the measurements from modal tests and shock tests. The available countermeasures are investigated theoretically and experimentally to find the effective methods of reducing the shock acceleration on hard disk driver during one side fall test. The hard disk drive is the most sensitive part in a laptop computer. This research shows the effects of the spring constant of rubber pad, the reinforcement of mechanical parts and the location of a hard disk driver, on the shock reduction.

  • PDF

Service Life Prediction of Components or Materials Based on Accelerated Degradation Tests (가속열화시험에 의한 부품·소재 사용수명 예측에 관한 연구)

  • Kwon, Young Il
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.103-111
    • /
    • 2017
  • Purpose: Accelerated degradation tests can speed time to market and reduce the test time and costs associated with long term reliability tests to verify the required service life of a product or material. This paper proposes a service life prediction method for components or materials using an accelerated degradation tests based on the relationships between temperature and the rate of failure-causing chemical reaction. Methods: The relationship between performance degradation and the rate of a failure-causing chemical reaction is assumed and least square estimation is used to estimate model parameters from the degradation model. Results: Methods of obtaining acceleration factors and predicting service life using the degradation model are presented and a numerical example is provided. Conclusion: Service life prediction of a component or material is possible at an early stage of the degradation test by using the proposed method.

Design and Analysis of an Accelerated Life Test for Magnetic Contactors

  • Ryu, Haeng-Soo;Park, Sang-Yong;Han, Gyu-Hwan;Kwon, Young-Il;Yoon, Nam-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.188-193
    • /
    • 2007
  • Magnetic contactors (MCs) are widely used in industrial equipment such as elevators, cranes and factory control rooms in order to close and open the control circuits. The reliability of MCs mainly depend on mechanical durability and international standards such as IEC 60947-4-1, which stipulates the testing method for MCs. Testing time, however, is so long in usual cases that a method of reducing testing time is required. Therefore, a temperature and voltage-accelerated life testing (ALT) method has been developed to reduce the testing time in this work. The accelerated life test data are analyzed and acceleration factors (AFs) are provided.

A STUDY ON THE ACCELERATED LIFE TESTS OF IMAGE INTENSIFIER ASSEMBLY(KIT-7) (야간투시경용 영상증폭관(KIT-7)의 가속수명시험에 관한 연구)

  • Kim, Sung-Min;Park, Jung-Won;Ham, Jung-Keol;Kim, Kwang-Youn
    • Journal of Applied Reliability
    • /
    • v.7 no.3
    • /
    • pp.127-136
    • /
    • 2007
  • The accelerated life tests(ALTs) and degradation characteristics of image intensifier assembly(KIT-7) under low illuminance and high temperature were investigated. The accelerated life tests were carried out at $5{\times}10^5\;fc-40^{\circ}C,\;10{\times}10^5\;fc-40^{\circ}C,\;5{\times}10^5\;fc-50^{\circ}C,\;10{\times}10^5\;fc-50^{\circ}C$ and relationship related to illuminance and temperature was used as an accelerated life test model. An ALTA program[6] was used to calculate an acceleration factor and the test of life distribution fit, and estimate three parameters of an life test model. To sum up, MTTF 10,000 h at $5{\times}10^{-5}\;fc-40^{\circ}C$ of image intensifier assembly was certificated.

  • PDF

Data analysis of simulated fuel-loaded sea transportation tests under normal conditions of transport

  • JaeHoon Lim;Woo-seok Choi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.375-388
    • /
    • 2024
  • In this study, to evaluate the shock and vibration load characteristics of used fuel, a sea transportation test was conducted using simulated fuel assemblies under normal transport conditions. An overall test data analysis was performed based on the measured strain and acceleration data obtained from cruise, rotation, acceleration, braking, depth of water, and rolling tests. In addition, shock response spectrum and power spectral densities were obtained for each test case. Amplification and attenuation characteristics were investigated based on the load path. The load was amplified as it passed from the overpack to the simulated used fuel-assembly. As a result of the RMS trend analysis, the fuel-loading position of the transportation package affected the measured strain in the fuel rod, and the maximum strains were obtained at the spans with large spacing. However, even these maximum strains were very small compared to the fatigue strength and the cladding yield strength. Moreover, the fuel rods located on the side exhibited a larger strain value than those at the center.

Acceleration Variation of Surrounding Ground according to distance from Strip-Type Crushed Stone Foundation (쇄석 띠기초와의 거리에 따른 주변지반의 가속도 변화)

  • Son, Su-Won;Son, Tae-Ik;Kim, Soo-Bong;Kim, Jin-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.217-223
    • /
    • 2019
  • In this study, the acceleration changes of the surrounding ground when crushed stones were installed in a strip-type were analyzed using the 1-G shaking table test. The ground was constructed from clay, and the foundation was installed using crushed stone of strip-type form. The response acceleration and response spectrum for various input seismic motions were analyzed. The change in acceleration was examined according to the adjacent distance to the strip-type crushed stone foundation. In the Hachinohe seismic motion results, there was no significant decrease in acceleration, but the maximum response acceleration for the two seismic motions was inversely proportional to the distance from the crushed stone foundation. As a result of the response spectrum analysis, the attenuation period in the long period and the short period input wave were different from each other, and the change in response spectrum affected the maximum acceleration value. As the distance from the crushed stone foundation was increased, the attenuation was larger in the period between 0.08 and 0.5 sec in the Hachinohe seismic motion, the attenuation was larger in the period of less than 0.2 seconds in the Northridge seismic motion.

Study on the Improvement of Response Spectrum Analysis of Pile-supported Wharf with Virtual Fixed Point (가상고정점기법이 적용된 잔교식 구조물의 응답스펙트 럼해석법 개선사항 도출 연구)

  • Yun, Jung Won;Han, Jin Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.311-322
    • /
    • 2018
  • As a method of seismic-design for pile-supported wharves, equivalent static analysis, response spectrum analysis, and time history analysis method are applied. Among them, the response spectrum analysis is widely used to obtain the maximum response of a structure. Because the ground is not modeled in the response spectrum analysis of pile-supported wharves, the amplified input ground acceleration should be calculated by ground classification or seismic response analysis. However, it is difficult to calculate the input ground acceleration through ground classification because the pile-supported wharf is build on inclined ground, the methods to calculate the input ground acceleration proposed in the standards are different. Therefore, in this study, the dynamic centrifuge model tests and the response spectrum analysis were carried out to calculate the appropriate input ground acceleration. The pile moment in response spectrum analysis and the dynamic centrifuge model tests were compared. As a result of comparison, it was shown that the response spectrum analysis results using the amplified acceleration in the ground surface were appropriate.

Damage assessment of shear buildings by synchronous estimation of stiffness and damping using measured acceleration

  • Shin, Soobong;Oh, Seong Ho
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.245-261
    • /
    • 2007
  • Nonlinear time-domain system identification (SI) algorithm is proposed to assess damage in a shear building by synchronously estimating time-varying stiffness and damping parameters using measured acceleration data. Mass properties have been assumed as the a priori known information. Viscous damping was utilized for the current research. To chase possible nonlinear dynamic behavior under severe vibration, an incremental governing equation of vibrational motion has been utilized. Stiffness and damping parameters are estimated at each time step by minimizing the response error between measured and computed acceleration increments at the measured degrees-of-freedom. To solve a nonlinear constrained optimization problem for optimal structural parameters, sensitivities of acceleration increment were formulated with respect to stiffness and damping parameters, respectively. Incremental state vectors of vibrational motion were computed numerically by Newmark-${\beta}$ method. No model is pre-defined in the proposed algorithm for recovering the nonlinear response. A time-window scheme together with Monte Carlo iterations was utilized to estimate parameters with noise polluted sparse measured acceleration. A moving average scheme was applied to estimate the time-varying trend of structural parameters in all the examples. To examine the proposed SI algorithm, simulation studies were carried out intensively with sample shear buildings under earthquake excitations. In addition, the algorithm was applied to assess damage with laboratory test data obtained from free vibration on a three-story shear building model.