• Title/Summary/Keyword: Acceleration Control

Search Result 1,473, Processing Time 0.036 seconds

Effect of Hominis Placenta on cutaneous wound healing in normal and diabetic mice

  • Park, Ji-Yeun;Lee, Jiyoung;Jeong, Minsu;Min, Seorim;Kim, Song-Yi;Lee, Hyejung;Lim, Yunsook;Park, Hi-Joon
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.404-409
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: The number of diabetic patients has recently shown a rapid increase, and delayed wound healing is a major clinical complication in diabetes. In this study, the wound healing effect of Hominis placenta (HP) treatment was investigated in normal and streptozotocin-induced diabetic mice. MATERIALS/METHODS: Four full thickness wounds were created using a 4 mm biopsy punch on the dorsum. HP was injected subcutaneously at the middle region of the upper and lower wounds. Wounds were digitally photographed and wound size was measured every other day until the 14th day. Wound closure rate was analyzed using CANVAS 7SE software. Wound tissues were collected on days 2, 6, and 14 after wounding for H/E, immunohistochemistry for FGF2, and Masson's trichrome staining for collagen study. RESULTS: Significantly faster wound closure rates were observed in the HP treated group than in normal and diabetes control mice on days 6 and 8. Treatment with HP resulted in reduced localization of inflammatory cells in wounded skin at day 6 in normal mice and at day 14 in diabetic mice (P < 0.01). Expression of fibroblast growth factor (FGF) 2 showed a significant increase in the HP treated group on day 14 in both normal (P < 0.01) and diabetic mice (P < 0.05). In addition, HP treated groups showed a thicker collagen layer than no treatment groups, which was remarkable on the last day, day 14, in both normal and diabetic mice. CONCLUSIONS: Taken together, HP treatment has a beneficial effect on acceleration of cutaneous wound healing via regulation of the entire wound healing process, including inflammation, proliferation, and remodeling.

Lower the Detection Limits of Accelerator Mass Spectrometry

  • John A., Eliades;Song, Jong-Han;Kim, Jun-Gon;Kim, Jae-Yeol;O, Jong-Ju;Kim, Jong-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.243-244
    • /
    • 2013
  • Over the past 15 years, several groups have incorporated radio-frequency quadrupole (RFQ) based instruments before the accelerator in accelerator mass spectrometry (AMS) systems for ion-gas interactions at low kinetic energy (<40 eV). Most AMS systems arebased on a tandem accelerator, which requires negative ions at injection. Typically, AMS sensitivity abundance ratios for radioactive-to-stable isotope are limited to Xr/Xs >10^-15, and the range of isotopes that can be analyzed is limited because of theneed to produce rather large negative ion beams and the presence of atomic isobaric interferences after stripping. The potential of using low-kinetic energy ion-gas interactions for isobar suppression before the accelerator has been demonstrated for several negative ion isobar systems with a prototype RFQ system incorporated into the AMS system at IsoTrace Laboratory, Canada (Ontario, Toronto). Requisite for any such RFQ system applied to very rare isotope analysis is large transmission of the analyte ion. This requires proper phase-space matching between the RFQ acceptance and the ion beam phase space (e.g. 35 keV, ${\varphi}3mm$, +-35 mrad), and the ability to control the average ion energy during interactions with the gas. A segmented RFQ instrument is currently being designed at Korea Institute for Science and Technology (한국과학기술연구원, KIST). It will consist of: a) an initial static voltage electrode deceleration region, to lower the ion energy from 35 keV down to <40 eV at injection into the first RFQ segment; b) the segmented quadrupole ion-gas interaction region; c) a static voltage electrode re-acceleration region for ion injection into a tandem accelerator. Design considerations and modeling will be discussed. This system should greatly lower the detection limits of the 6 MV AMS system currently being commissioned at KIST. As an example, current detection sensitivity of 41Ca/Ca is limited to the order of 10^-15 while the 41Ca/Ca abundance in modern samples is typically 41Ca/Ca~10^-14 - 10^-15. The major atomic isobaric interference in AMS is 41K. Proof-of-principal work at IsoTrace Lab. has demonstrated that a properly designed system can achieve a relative suppression of KF3-/41CaF3- >4 orders of magnitude while maintaining very high transmission of the 41CaF3- ion. This would lower the 41Ca detection limits of the KIST AMS system to at least 41Ca/Ca~10^-19. As Ca is found in bones and shells, this would potentially allow direct dating of valuable anthropological archives and archives relevant to our understanding of the most pronounced climate change events over the past million years that cannot be directly dated with the presently accessible isotopes.

  • PDF

Combined Effect of Gamma Irradiation and Silk Peptide on the Radio-sensitivity of Bacteria and Storage Stability of Ready-to-eat Hamburger Patty (감마선 조사와 실크 펩타이드 병용처리가 세균의 방사선 감수성 및 햄버거 패티의 저장 안정성에 미치는 영향)

  • Kim, Jae-Hun;Park, Jin-Gyu;Song, Beom-Seok;Lee, Ju-Woon;Kim, Wang-Geun;Hwang, Young-Jeong;Byun, Myung-Woo
    • Food Science and Preservation
    • /
    • v.14 no.5
    • /
    • pp.481-486
    • /
    • 2007
  • This study was conducted to evaluate the combined effect of gamma irradiation and silk peptide on the radiosensitivity of bacteria and the storage stability of ready-to-eat hamburger patty. The $D_{10}$ values obtained for Escherichia coli, Listeria ivanovii, Salmonella typhimurium and Clostridium sporogenes by gamma irradiation were 0.25, 0.50, 0.55 and 1.35 kGy, respectively. The inactivation rate of S. typhimurium ($D_{10}=0.53kGy$) inoculated into hamburger patty with 5%(w/w) silk peptide was reduced 6% compared with the control $D_{10}=0.558kGy$). In acceleration storage at $30^{\circ}C$, microorganisms were not observed in samples irradiated with 7 kGy or 10 kGy during storage. However the irradiation at 5 kGy was insufficient to sterilize the contaminated microorganisms in hamburger patty regardless of the addition of silk peptide (5%). These results indicate that the combined treatment of gamma-irradiation and silk peptide admixture could be helpful to ensure storage stability of ready-to-eat hamburger patty, by controlling the preliminary microbial load.

Seismic structural demands and inelastic deformation ratios: Sensitivity analysis and simplified models

  • Chikh, Benazouz;Laouami, Nacer;Mebarki, Ahmed;Leblouba, Moussa;Mehani, Youcef;Kibboua, Abderrahmane;Hadid, Mohamed;Benouar, Djillali
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.59-66
    • /
    • 2017
  • Modern seismic codes rely on performance-based seismic design methodology which requires that the structures withstand inelastic deformation. Many studies have focused on the inelastic deformation ratio evaluation (ratio between the inelastic and elastic maximum lateral displacement demands) for various inelastic spectra. This paper investigates the inelastic response spectra through the ductility demand ${\mu}$, the yield strength reduction factor $R_y$, and the inelastic deformation ratio. They depend on the vibration period T, the post-to-preyield stiffness ratio ${\alpha}$, the peak ground acceleration (PGA), and the normalized yield strength coefficient ${\eta}$ (ratio of yield strength coefficient divided by the PGA). A new inelastic deformation ratio $C_{\eta}$ is defined; it is related to the capacity curve (pushover curve) through the coefficient (${\eta}$) and the ratio (${\alpha}$) that are used as control parameters. A set of 140 real ground motions is selected. The structures are bilinear inelastic single degree of freedom systems (SDOF). The sensitivity of the resulting inelastic deformation ratio mean values is discussed for different levels of normalized yield strength coefficient. The influence of vibration period T, post-to-preyield stiffness ratio ${\alpha}$, normalized yield strength coefficient ${\eta}$, earthquake magnitude, ruptures distance (i.e., to fault rupture) and site conditions is also investigated. A regression analysis leads to simplified expressions of this inelastic deformation ratio. These simplified equations estimate the inelastic deformation ratio for structures, which is a key parameter for design or evaluation. The results show that, for a given level of normalized yield strength coefficient, these inelastic displacement ratios become non sensitive to none of the rupture distance, the earthquake magnitude or the site class. Furthermore, they show that the post-to-preyield stiffness has a negligible effect on the inelastic deformation ratio if the normalized yield strength coefficient is greater than unity.

Study on Incineration Behavior of Heavy Oil Fly Ash for Valuable Metal Recovery (유가금속(有價金屬) 회수(回收)를 위한 중유회(重油灰)의 연소거동(燃燒擧動)에 관한 연구(硏究))

  • Choi, Young-Yeon;Nam, Chul-Woo;Kim, Byoung-Gyu
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.22-29
    • /
    • 2009
  • To design and construct a moving bed stoker incinerator for incineration treatment of the domestic oil fly ash, operating condition and moving bed area of incinerator were determined by performing incinerate experiment of the oil fly ash in the muffle furnace which simulates moving bed stoker incinerator in all conditions. Incineration process of the oil fly ash could be divided into 3 stages, every stage needs the appropriate operating condition for effective incineration. The optimum content of water in the heavy oil fly ash was found to be 20 wt% to prevent the ash from flying and reduce the volume. Science combustion rate of oil fly ash depends on the oxygen content, the incinerator must have a equipment to control the oxygen content in the combustion air. The optimum temperature was $750{\sim}800^{\circ}C$ in order to prevent adhesion to the stocker and evaporation of metal compounds of low melting point. Uniform combustion reaction and acceleration of combustion rate required agitation during the combustion of oil fly ash. The incineration rate was $12.53kg/m^2hr$ and the working area of moving bed incinerator was found to be $60m^2$ to incinerate 18 tons of oil fly ash per day.

An Algorithm for Heavy Duty Truck Priority on Left-turn to Reduce Greenhouse Gas Emissions (온실가스 감축을 위한 대형 화물차 좌회전 우선신호 알고리즘 개발)

  • Yang, Se Jung;Kim, Suhyeon;Kim, Hyo Seung;Lee, Chungwon
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.5
    • /
    • pp.60-70
    • /
    • 2013
  • This study aims to develop a truck priority on left-turn algorithm that can reduce greenhouse gas emissions by reducing heavy duty truck's stops at signalized intersection. The signal priority is granted for a left-turn phase, because heavy duty trucks can deteriorate left-turn traffic flow due to the low acceleration or deceleration rate and large turn radius. Truck priority allows to provide the stable speed control for heavy duty truck, and reduces emissions at the signal intersection. Also, two signal recovery strategies are compared for various traffic conditions. This study analyzes the effectiveness of truck priority such as greenhouse gas emissions and fuel consumption reduction, and total travel time saving using the PARAMICS and Comprehensive Modal Emissions Model (CMEM). The results show that signal priority for heavy duty trucks has an effect on reducing greenhouse gas emissions and fuel consumptions at non-peak hour. Also, it shows decreasing total travel time due to reducing truck stops.

A Study on Variable Speed Limit Strategies in Freeway Work Zone Using Multi-Criteria Decision Making Process (다기준 의사결정기반 고속도로 공사구간 VSL전략에 관한 연구)

  • Park, Juneyoung;Oh, Cheol;Chang, Myungsoon
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.5
    • /
    • pp.3-15
    • /
    • 2013
  • The purpose of this study is to propose a methodology for operating variable speed limit (VSL) strategies in freeway work zones. A notable feature in this study is to incorporate a multi-criteria decision making process into deriving better VSL strategies. Decision criteria in this study include operational efficiency, safety, and environmental impacts. Travel speed, acceleration noise, and CO2 were used as performance measures for evaluating VSL strategies. A multi-criteria value function was developed through an analytical hierarchical process (AHP) for representing expert's knowledge. Then, a variety of VSL operations scenarios were investigated utilizing a microscopic traffic simulation suite, VISSIM. The proposed methodology would be useful in supporting more efficient, safer, and more environment-friendly traffic operations and control in freeway work zones.

A Review on TOPCon Solar Cell Technology

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Chowdhury, Sanchari;Pham, Duy Phong;Kim, Youngkuk;Ju, Minkyu;Cho, Younghyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.9 no.3
    • /
    • pp.75-83
    • /
    • 2021
  • The tunnel oxide passivated contact (TOPCon) structure got more consideration for development of high performance solar cells by the introduction of a tunnel oxide layer between the substrate and poly-Si is best for attaining interface passivation. The quality of passivation of the tunnel oxide layer clearly depends on the bond of SiO in the tunnel oxide layer, which is affected by the subsequent annealing and the tunnel oxide layer was formed in the suboxide region (SiO, Si2O, Si2O3) at the interface with the substrate. In the suboxide region, an oxygen-rich bond is formed as a result of subsequent annealing that also improves the quality of passivation. To control the surface morphology, annealing profile, and acceleration rate, an oxide tunnel junction structure with a passivation characteristic of 700 mV or more (Voc) on a p-type wafer could achieved. The quality of passivation of samples subjected to RTP annealing at temperatures above 900℃ declined rapidly. To improve the quality of passivation of the tunnel oxide layer, the physical properties and thermal stability of the thin layer must be considered. TOPCon silicon solar cell has a boron diffused front emitter, a tunnel-SiOx/n+-poly-Si/SiNx:H structure at the rear side, and screen-printed electrodes on both sides. The saturation currents Jo of this structure on polished surface is 1.3 fA/cm2 and for textured silicon surfaces is 3.7 fA/cm2 before printing the silver contacts. After printing the Ag contacts, the Jo of this structure increases to 50.7 fA/cm2 on textured silicon surfaces, which is still manageably less for metal contacts. This structure was applied to TOPCon solar cells, resulting in a median efficiency of 23.91%, and a highest efficiency of 24.58%, independently. The conversion efficiency of interdigitated back-contact solar cells has reached up to 26% by enhancing the optoelectrical properties for both-sides-contacted of the cells.

Development of a Self Balancing Electric Wheelbarrow (자기 균형 기능이 있는 외발 전동 손수레 개발)

  • Lee, Myung-Sub;Sung, Young-Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.21-28
    • /
    • 2020
  • In this paper, a new type of electric wheelbarrow is proposed and developed. The developed electric wheelbarrow is equipped with an attitude reference system(ARS) sensor, which consists of 3-axis acceleration sensor and 2-axis Gyro sensor so that it can estimate pitch angle and roll angle. When an operator tilts the wheelbarrow up and down, the pitch angle is detected. The sign of the pitch angle is interpreted as the operator's intention for moving the wheelbarrow forward or backward and the controller drives the wheel of the wheelbarrow with the velocity according to the magnitude of the detected pitch angle. A cargo box of the wheelbarrow is designed to rotate and is controlled to maintain level always, so an operator can handle the electric wheelbarrow easily and safely. The wheelbarrow consists of an in-wheel motor, a DC motor, motor drives, an ARS sensor considering economical use in industrial field. Three experiments are performed to verify the feasibility and stability of the electric wheelbarrow.

Design of a Compact GPS/MEMS IMU Integrated Navigation Receiver Module for High Dynamic Environment (고기동 환경에 적용 가능한 소형 GPS/MEMS IMU 통합항법 수신모듈 설계)

  • Jeong, Koo-yong;Park, Dae-young;Kim, Seong-min;Lee, Jong-hyuk
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.68-77
    • /
    • 2021
  • In this paper, a GPS/MEMS IMU integrated navigation receiver module capable of operating in a high dynamic environment is designed and fabricated, and the results is confirmed. The designed module is composed of RF receiver unit, inertial measurement unit, signal processing unit, correlator, and navigation S/W. The RF receiver performs the functions of low noise amplification, frequency conversion, filtering, and automatic gain control. The inertial measurement unit collects measurement data from a MEMS class IMU applied with a 3-axis gyroscope, accelerometer, and geomagnetic sensor. In addition, it provides an interface to transmit to the navigation S/W. The signal processing unit and the correlator is implemented with FPGA logic to perform filtering and corrrelation value calculation. Navigation S/W is implemented using the internal CPU of the FPGA. The size of the manufactured module is 95.0×85.0×.12.5mm, the weight is 110g, and the navigation accuracy performance within the specification is confirmed in an environment of 1200m/s and acceleration of 10g.