• 제목/요약/키워드: Acceleration/Deceleration Control

검색결과 148건 처리시간 0.032초

Gain-Scheduling 기법을 이용한 크레인의 흔들림 제어에 관한 연구 (A Study on the Sway Control of a Crane Based on Gain-Scheduling Approach)

  • 김영복
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.53-64
    • /
    • 2001
  • The gain-scheduling control technique is vary useful in the control problem incorporating time varying parameters which can be measured in real time. Based on these facts, in this paper the sway control problem of the pendulum motion of a container hanging on the trolly, which transports containers from a container ship to trucks, is considered. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, the trolley motion control strategy is introduced and applied. But, in this paper, we introduce and synthesize a new type of swing motion control system. In this control system, a small auxiliary mass is installed on the spreader. And the actuator reacts against the auxiliary mass, applying inertial control forces to the container to reduce the swing motion in the desired manner. In this paper, we assume that an plant parameter is varying and apply the gain-scheduling control technique design the anti-swing motion control system for the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the simulation result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

$H^{\infty}$ Gain-Scheduling 기법을 이용한 컨테이너 크레인의 흔들임 제어에 관한 연구 (A Study on the Sway Control of a Container Crane Based on $H^{\infty}$ Gain-Scheduling Approach)

  • 김영복;정용길
    • 제어로봇시스템학회논문지
    • /
    • 제7권7호
    • /
    • pp.559-566
    • /
    • 2001
  • The sway control problem of the pendulum motion of a container hanging on the trolly, which transports containers from a container ship to trucks, is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, the trolley motion control strategy is introduced and applied. In this paper, we introduce and synthesize a new type of swing motion control system in which a small auxiliary mass is installed on the spreader. The actuator reacting against the auxiliary mall applies inertial control forces to the container to reduce the swing motion in the desired manner. In this paper, we apply the $H^{\infty}$ based gain-scheduling control technique to the anti-swing motion control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the simulation result shows that the proposed control strategy is shown to be useful for the case of time-varying system and, robust to disturbances such as winds and initial sway motion.

  • PDF

도시철도 열차 정위치 정차제어의 새로운 방안에 대한 연구: 속도 오차가 큰 경우 (Study on a New Method for Precise Stop Control of Metro Trains: In Case of Large Speed Error)

  • 김정태
    • 한국산학기술학회논문지
    • /
    • 제22권6호
    • /
    • pp.591-598
    • /
    • 2021
  • 도시철도 열차의 요구 사항 중 하나가 정위치 정차 성능이다. 이는 열차가 승강장의 지정된 위치에 정확히 정차할 수 있도록 하는 것이며 정위치 정차를 만족시키지 못할 경우 스크린도어와의 간섭이 발생하여 승객 불편 및 운행 지연을 초래한다. 자동운전 열차의 경우 열차의 현재 속도 정보를 가지고 현재의 위치를 파악한 후 이에 맞게 가감속 명령을 내려 제어를 수행하므로 속도 정보의 오차가 클 경우 정확한 제어가 불가능하게 된다. 도시철도에서는 위치 오차를 보정하기 위해 PSM(Precision Stop Marker)가 있어 특정 지점에서 위치 오차를 보정하여 정차제어의 오차를 줄이도록 한다. 그러나 PSM 자체는 위치정보만 가지고 있으므로 속도 오차에 대한 보정은 수행하지 않는다. 본 논문에서는 PSM 경과 정보를 가지고 속도를 추정하여 정위치 정차제어를 수행하는 방안에 대하여 제안한다. 등감속도로 열차를 운행하면 속도를 추정할 수 있고 이에 따라 목표 감속도를 구하여 정차제어를 수행할 수 있다. 수치적 시뮬레이션을 통해 제안한 방안의 실현 가능성과 우수성을 보인다.

Anti-Sway Control System Design for the Container Crane

  • An, Sang-Back;Kim, Young-Bok;Kang, Gi-Bong;Zhai, Guisheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1404-1409
    • /
    • 2003
  • The sway control problem of the pendulum motion of the container crane hanging on the trolley, which transports containers from the container ship to the truck, is considered in this paper. In the container crane control problem, the main issue is to suppress the residual swing motion of the container at the end of the acceleration, deceleration or the case of that the unexpected disturbance input exists. For this problem, in general, the trolley motion control strategy is introduced and applied to real plants. In this paper, we suggest a new type of swing motion control system for a crane system in which a small auxiliary mass is installed on the spreader. The actuator reacting against the auxiliary mass applies inertial control forces to the spreader of the container crane to reduce the swing motion in the desired manner. In this paper, we consider that the length of the rope varies is we design the anti-sway control system based on LMI(linear matrix inequality) approach. And, it will be shown that the proposed control strategy is useful and it can be easily applicable to the real world. So, in this study, we investigate usefulness of the proposed anti-sway system and evaluate system performance from simulation and experimental studies.

  • PDF

로프 길이변화를 고려한 크레인의 흔들림 제어에 관한 연구: Gain-Scheduling 기법에 의한 제어기 설계 (A Study on the Sway Control of a Container Crane with Varying Rope Length Based on Gain-Scheduling Approach)

  • 김영완;김영복
    • 동력기계공학회지
    • /
    • 제8권3호
    • /
    • pp.58-66
    • /
    • 2004
  • The sway motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. Especially, we apply the $H_{\infty}$ based gain-scheduling control technique the anti-sway control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the simulation result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

로프 길이 변화를 고려한 크레인의 흔들림 제어에 관한 연구;Gain-Scheduling 기법에 의한 제어기 설계 (A Study on the Sway Control of a Container Crane with Varying Rope Length Based on Gain-Scheduling Approach)

  • 김영완;김영복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.631-636
    • /
    • 2004
  • The sway motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. Especially, we apply the $H_{\infty}$ based gain-scheduling control technique the anti-sway control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the experiment result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

컨테이너 크레인의 흔들림 제어 ( Part I ) : 모델링, 제어전략, 기준선도를 통한 오차 피이드백 제어 (Sway Control of a Container Crane ( Part I ) : Modeling, Control Strategy, Error Feedback Control Via Reference Velocity Profiles)

  • 홍금식;손성철;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제3권1호
    • /
    • pp.23-31
    • /
    • 1997
  • The sway control problem of pendulum motion of a container hanging on a Portainer Crane, which transports containers from a container ship to trucks, is considered in the paper. The equations of motion are obtained through the Lagrange mechanics and simplified for control purposes. Considering that the fast traveling of trolley and no residual swing motion of the container at the end of acceleration and deceleration are crucial for quick transportation, several velocity patterns of trolley movement including the time-optimal control are investigated. Incorporating the change of rope length, a reference swing trajectory is introduced in the control loop and the error signal between the reference sway angle and the measured sway angle is feedbacked. Proposed control strategy is shown to be robust to disturbances like winds and initial sway motion.

  • PDF

소프트웨어 PLL 기반 소형 고속 BLDCM의 속도 제어 (Speed Control of High Speed Miniature BLDCM Based on Software PLL)

  • 이동희
    • 전력전자학회논문지
    • /
    • 제14권2호
    • /
    • pp.112-119
    • /
    • 2009
  • 본 논문은 홀센서를 사용하는 고속 소형 BLDCM의 속도제어를 위해 PLL 방식을 적용하였다. 제안된 방식은 기준펄스 신호와 홀센서 신호와의 위상차를 이용하는 PLL 기반의 속도제어 기법으로, 별도의 속도 계산이 요구되지 않고, 지령전류는 직접 두 신호의 위상차에 의해 결정된다. 전류 지령은 두 펄스 신호의 위상차에 따라서, 전동기의 속도를 일정하게 유지하기 위하여 변화된다. 제안된 방식은 매우 간단하지만 효과적인 속도 제어를 구현할 수 있다. 또한, 부드러운 토크를 발생하기 위하여 지령 전류는 가속 및 감속 패턴을 따라 변동하도록 설계되었다. 제안된 방식은 50W, 40,000[rpm]급의 소형 고속 BLDCM에 적용하여 실험하였다.

강판의 자동 형상제어 장치의 특성에 관한 연구 (A Study on the Characteristics of Automatic Flatness Control System for Stell Sheet)

  • 김순경;전연찬;김중완;김문경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.541-545
    • /
    • 1996
  • In this paper, The performance and functions of automatic flatness control system installed on the 4 hi-reversing mill and has been investigated under actualconditions. A new automatic flatness control system incorporates a measuring roll for measurement and correction calculations, hydraulic roll benders, selective roll cooling, and a programmable controller for interface and data logging. The test results are as following. The more the exit steel strip thickness is thick, the smaller the I value, and the more it is thin, the larger the I value. And, a complex distribution of strip tension was controlled, for example, not only a quarter buckle but also a simple center wave and edge wave. Because the tension deviation is larger at acceleration speed and deceleration speed than steady speed, so automatic flatness control system of contact type is better to adopt over 450 m/min, automatic flatness control system reduces rapidly large flatness deviation. The maximum I value of strip has been decreased to 13 I, and defects caused by poor flatness have been drastically decreased. And coolant temperature for work roll cooling system on the automatic flatness control system is better to adopt about 50-55 .deg. C.

  • PDF

슬라이딩 모드 PID 제어법을 이용한 유도 전동기의 위치제어 (Position Control of Induction Motor Using the Sliding Mode PID Control Method)

  • 이윤종;김희준;손영대;장동제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 하계학술대회 논문집
    • /
    • pp.341-345
    • /
    • 1990
  • This paper presents the three section sliding mode control algorithm based on hysteresis current control add indirect field oriented control method, and applies it to the position control of induction motor. The three section sliding trajectories are defined in such a way that the system responds following a max acceleration line, then a max speed line, and finally a max deceleration line. This control scheme solves the problem of robustness loss during the reaching phase that occurs in conventional VSC strategy, and ensures the stable sliding mode and robustness enhancement throughout an entire response. Also, the PID controller operating in parallel is adopted to eliminate the sliding mode's collapse phenomenon near the origin caused by steady state chattering phenomenon Digital simulation results confirm that the dynamic performance of the system is insensitive to parameter variations and disturbances.

  • PDF