• Title/Summary/Keyword: Acceleration/Deceleration Control

Search Result 148, Processing Time 0.023 seconds

Optimization of Motion Control System on the Machine Tool (공작기계의 이송계 제어 시스템의 최적화)

  • 박인준;곽경남;백형래
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.336-340
    • /
    • 1997
  • This paper is a study about motor technic of motion and feedforward control in order to shape cutting control on the machine tool. The shape error caused by delay of the servo system in the direction of radius at the time of circular cutting is reduced by feedforward control, shape error generated by the position command delay is minimized by using the acceleration/deceleration time constant after the interpolation. The study was verified to optimization of motion control on experiments of a vertical machining center of the machine tool.

  • PDF

Development of Continuous/Intermittent Welding Mobile Robot (연단속 용접 주행로봇의 개발)

  • 강치정;전양배;감병오;신승화;김상봉
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.31-33
    • /
    • 2000
  • Welding processing is used in the various industrial fields such as shipbuilding, car, airplane and steel structure, etc.. But the welding process has a bad working condition and lack of skillful worker. The welding depended on man power causes low productivity and difficulty in keeping continuous and stable quality control. This paper shows the development results of welding mobile robot with the several functions such as continuous/intermittent welding, initial welding speed control, acceleration control, crater and deceleration speed control in welding end. The robot is developed based on microprocess which is intel 80c196kc.

  • PDF

Development of CNC controller based on i80486 and 32bit DSP chip (i80486과 32비트 DSP를 사용한 CNC 제어기의 개발)

  • Kim, Dong-Il;Song, Jin-Il;Kim, Sung-Kwan;Lee, Choong-Hwan;Lee, Yun-Suk;Kang, Moon;Na, Sang-Keun;Lim, Yong-Gyu;Nam, Ki-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.537-540
    • /
    • 1992
  • This paper presents Samsung CNC (Computer Numerical Controller) system with an intel 80486/487 as the main CPU and a 32 bit floating point DSP(Digital Signal Processor) TMS320C30 as the motion control CPU. The Samsung CNC system diverse user-frienly characteristics such as multi-tasking, powerful menu system, internal PLC system, and 2/3 dimensional graphics in wire and solid mode. The main CPU executes central processing program, user interface program, interpreter, BMI, etc while the motion control CPU carries out some interpolations, acceleration/deceleration, and PID control algorithm with feedforward terms. Complex interpolations except linear and circular ones are performed on the main control CPU. The experimental results for the circular interpolation under linear acceleration/deceleration shows that the proposed CNC system can be widely used in controlling machining centers with good machining accuracy.

  • PDF

A study on the slip frequency control of linear induction motor for magnetic levitation transit (자기 부상 열차용 리니어모터의 슬립 주파수 제어에 관한 연구)

  • Im, Dal-Ho;Kim, Gyu-Tak;Kim, Young-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.135-138
    • /
    • 1991
  • In this study, a variety of characteristics is considered when LIM for transit is driven with acceleration and deceleration. From the characteristics of constant voltage, with V/f ratio fixed, slip frequency is derived. With slip frequency of 12[Hz] and objective velocity of 40[km/h], the robust control characteristics which are generated constant thrust and normal force, except for open-loop control interval, are obtained.

  • PDF

A simulation study on the dynamics of an antiskid brake systems for automotive vehicles (자동차용 미끄럼 방지 제동 장치의 동특성에 관한 시뮬레이션 연구)

  • 김경훈;조형석;홍예선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.315-320
    • /
    • 1988
  • This paper considers modelling and control of ABS(Anti-skid Brake System) which avoids dangerous wheel locking due to excessive brake pressure during the vehicle braking. The brake pressure is controlled by on and off's of solenoid valves via the variation of the wheel circumferential deceleration measured using tacho-sensors. The dynamic model between the brake pressure and the wheel acceleration of a vehicle is mathematically derived. The computer simulation shows that the threshold value of the on-off control is critical to the performance of the ABS.

  • PDF

Surge and Rotating Speed Control for Unmanned Aircraft Turbo-jet Engine (무인 항공기 터보 제트 엔진의 서지와 회전 속도 제어)

  • Jie, Min-Seok;Hong, Gyo-Young;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.319-326
    • /
    • 2006
  • In this paper, a fuzzy inference control system is proposed for a turbojet engine with fuel flow control input only. The proposed control system provides a practical fuel flow control method to prevent surge or flame out during engine acceleration or deceleration. A fuzzy logic is designed to obtain the fast acceleration and deceleration of the engine under the condition that the operating point should stay between the surge line and flame out control line. With using both engine rotating speed error and surge margin as fuzzy input variables, the desired engine rotating speed can be achieved to rapidly follow the engine control line without engine stall. Computer simulation using the MATLAB is realized to prove the proposed control performance to the turbojet engine which is linear modelized using DYGABCD program package.

  • PDF

Comparison Study of Various Control Schemes for the Anti-Swing Crane (무진동 크레인의 구현을 위한 여러가지 제어방식의 비교 연구)

  • 윤지섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2399-2411
    • /
    • 1995
  • Crane operation for transporting heavy loads inherently causes swinging motion at the loads due to crane's acceleration or deceleration. This motion not only lowers the handling safety but also slows down the handling process. To complement such a problem, Korea Atomic Energy Research Institute(KAERI) has designed several anti-swing controllers using open loop and closed loop approaches. They are namely a pre-programmed feedback controller and a fuzzy controller. These controllers are implemented on a 1-ton crane system at KAERI and their control performances are compared. Test operations show that the new controllers are superior to that of conventional cranes in terms of robustness to the disturbances and adaptation capability to the change of rope length.

Tesion Control of Unwinder/Winder using a Tension Observer (장력 관측기를 이용한 풀림롤/감김롤의 장력제어)

  • Song, Seung-Ho;Seol, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.62-69
    • /
    • 2000
  • The strip tension as well as the line speed should be controlled tightly for the quality of products and productivity of the continuous strip processing line. In this paper, a new tension control algorithm with tension observer is proposed using observed tension as regulator feedback. The tension observer is based on the torque balance of a roller stand including the acceleration torque. Using this estimated tension, new tension controller can be constructed with faster dynamic response in case of line speed acceleration or deceleration. The proposed scheme needs no additional hardware because the inputs of observer, current and speed, are already being monitored by the motor drive system. Through the simulations and experiments with laboratory set up, performances fo conventional schemes and proposed one are compared. The results show the effectiveness of the proposed tension controller.

  • PDF

Numerical Study on Effects of Velocity Profile of Liquid Container on Sloshing (액체 용기의 속도 프로파일이 슬로싱에 미치는 영향 해석)

  • Kim, Dongjoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.313-319
    • /
    • 2016
  • It is very important to understand and control the sloshing in a liquid container that is partially filled with liquid. Previous studies focused primarily on the sloshing and resonance caused by sinusoidal excitations, while the present study focuses on understanding and suppressing sloshing in a container that moves rapidly from a given point to another in industrial applications. To achieve this, we first numerically predict the two-phase flow induced by the horizontal movement of a rectangular container. Then we analyze the effects of container-velocity profile (in particular acceleration/deceleration duration) on sloshing. Results show that sloshing is significantly suppressed when the acceleration/deceleration duration is a multiple of the 1st-mode natural period of sloshing.

Anti-swing of the Nonlinear Overhead Crane Using Partial State Feedback Control (부분상태 궤환제어를 이용한 비선형 천정크레인의 진자각제어)

  • Lee, Jong-Kyu;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.907-917
    • /
    • 1997
  • The purpose of this study is to design an anti-sway motion for industrial overhead cranes which transport objects on a horizontal plane by adjusting movements of a trolley motor and a girder motor. The movement of a hoist motor has not been considered at this time since its role was assumed to move objects only vertically, therefore, not to affect the swing motion of objects. The dynamic behavior of the swing motion shows nonlinear characteristics, which makes the design of anti-sway motion controller difficult. First of all, the nonlinear state equation for the motion of industrial overhead cranes has been derived. Then they have been linearized about normal operating states determined by the dynamic characteristics of motor motion-acceleration, constant speed, and deceleration, and deceleration, during transportation. The partial state feedback control algorithm based on this linearized state equation has been developed on order to suppress the swing motion. The simulation results have demonstrated satisfactory performance of the proposed controller.