• 제목/요약/키워드: Accelerated weathering test

검색결과 59건 처리시간 0.029초

The Influence of Weathering Conditions on the Outer Membrane of Biogas with Plasticized PVC : A Study using Non-destructive Tests

  • Kim, Changhwan;Ki, Wootae;Kim, SangMyung;Shin, Jinyong
    • 한국표면공학회지
    • /
    • 제47권2호
    • /
    • pp.57-62
    • /
    • 2014
  • The biogas holder is composed of an outer membrane and an inner membrane which are subject to outdoor exposure and gas exposure respectively. The influence of weathering conditions on the photo-degradation of a biogas holder was investigated. Tests were performed under three different methods - outdoor exposure tests (Seosan, Arizona), accelerated tests (Xenon-are lamp) with the outer-membrane of biogas. Moreover, the changes in the aging process were monitored using color difference, gloss, the contact angle and an optical microscope. Changes in physical properties, such as decrease reduction in gloss, decrease in the contact angle, increase in color difference were observed in the aging process. The comparison between membrane 3B, 4B and membrane 5B under xenon-arc were discussed. Membrane 5B was very sensitive to ultraviolet (UV) ray. There were many difficulties in the outdoor exposure test due to acid rain, dust, and stain resistance.

동결융해 작용을 받는 콘크리트 구조물의 내구성능 저하 예측 방법에 관한 연구 (A Study on the Deterioration Prediction Method of Concrete Structures Subjected to Cyclic Freezing and Thawing)

  • 고경택;김도겸;조명석;송영철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.131-140
    • /
    • 2001
  • In general, the deterioration induced by the freezing and thawing cyclic in concrete structures often leads to the reduction in concrete durability by the cracking or surface spalling. If it can prediction of concrete deterioration subjected to cyclic freezing and thawing, we can rationally do the design of mix proportion in view of concrete durability and the maintenance management of concrete structures. Therefore in this study a prediction method of deterioration for concrete structures subjected to the irregular freezing and thawing is proposed from the results of accelerated laboratory freezing and thawing test using the constant temperature condition and the in-situ weathering data. Furthermore, to accurately predict the concrete deterioration, a method of modification for the effect of hydration increasing during rapid freezing and thawing test is investigated.

  • PDF

보강용 지오신세틱스의 가속 인장 크리프 시험방법 (Accelerated Tensile Creep Test Method of Geosynthetics for Soil Reinforcement)

  • 구현진;조항원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.196-203
    • /
    • 2008
  • Durability of geosynthetics for soil reinforcement is accounted for creep and creep rupture, installation damage and weathering, chemical and biological degradation. Among these, the long-term creep properties have been considered as the most important factors which are directly related to the failure of geosynthetic-reinforced soil(GRS). However, the creep test methods and strain limits are too various to compare the test results with each other. The most widely used test methods are conventional creep test, time-temperature superposition and stepped isothermal method as accelerated creep tests. Recently developed design guidelines recommend that creep-rupture curve be used to determine the creep reduction factor($RF_{CR}$) which is a conservative approach. In this study, the different creep test methods were compared and the creep reduction factors were estimated at different creep strain limits of 10% of total creep strain and creep rupture. In order to minimize the impact of creep strain to the GRS structures, the various creep reduction factors using different creep test methods should be investigated and then the most appropriated one should be selected for incorporating into the design.

  • PDF

플라스틱 소재의 탈변색 열화 메커니즘 분석 (A Study for Degradation Mechanism of Plastic Materials)

  • 윤형준;정원욱;변두진;최기대
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제7권4호
    • /
    • pp.173-181
    • /
    • 2007
  • Out door exposure to daylight and weather climate conditions can cause adverse effect on the properties of automotive plastic materials. The effects of sunlight exposure, especially ultra violet (UV) radiation, can break down the chemical bonds in a polymeric material. This degradation process is called photo-degradation and ultimately leads to color changes, cracking, chalking, the loss of physical properties and deterioration of other properties. To explore the effect of sunlight exposure on the automotive materials, this study investigated photo-oxidation degree and surface property change of molding parts by analytical methods. For the further study, accelerated weathering test methods are proposed, which can correlate with out door weathering, to predict long term performance of automotive plastic materials.

  • PDF

온돌용 목질마루판의 표면물성 (Surface Properties of Wood-Based Floorings for Under Heating Systems (Ondol))

  • 김종인;박종영;이병후;김현중
    • 한국가구학회지
    • /
    • 제13권1호
    • /
    • pp.27-37
    • /
    • 2002
  • This study was investigated with the surface properties such as physical and accelerated tests of wood-based floorings. In physical test, hardness and abrasion resistance values of laminate floorings were higher than those of others. The center line average surface roughness($R_a$) of imported laminate flooring was highest value($1.34{\mu}m$) and that of imported solid wood flooring was lowest value($0.62{\mu}m$). In cold resistance and moist heat resistance, no defects were found on the surface of all flooring (crack, blistering, peeling, and gloss loss etc.) after testing. Wet-cold-dry cycle test showed that plywood flooring appeared some cracks. In accelerated weathering test, color difference increased with increasing Xenon arc light irradiation

  • PDF

장경간 강바닥판 케이블교량에 적용하기 위한 폴리우레탄 폴리머콘크리트의 공용특성 연구 (A Study to Evaluate Performance of Poly-Urethane Polymer Concrete for Long-Span Orthotropic Steel Bridge)

  • 박희영;이정훈;곽병석;최이현;김태우
    • 한국도로학회논문집
    • /
    • 제15권1호
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES: The purpose of this study is to evaluate physical properties, durability, fatigue resistance, and long-term performance of poly-urethane concrete (PU) which can be possible application of thin layer on long-span orthotropic steel bridge and to check structural stability of bridge structure. METHODS : Various tests of physical properties, such as flexural strength, tensile strength, bond strength and coefficient of thermal expansion tests were conducted for physical property evaluation using two types of poly urethane concrete which have different curing time. Freezing and thawing test, accelerated weathering test and chloride ion penetration test were performed to evaluate the effect of exposed to marine environment. Beam fatigue test and small scale accelerated pavement test were performed to assess the resistance of PU against fatigue damage and long-term performance. Structural analysis were conducted to figure out structural stability of bridge structure and thin bridge deck pavement system. RESULTS: The property tests results showed that similar results were observed overall however the flexural strength of PUa was higher than those of PUb. It was also found that PU materials showed durability at marine environment. Beam fatigue test results showed that the resistances of the PUa against fatigue damage were two times higher than those of the PUb. It was found form small scale accelerated pavement test to evaluate long-term performance that there is no distress observed after 800,000 load applications. Structural analysis to figure out structural stability of bridge structure and thin bridge deck pavement system indicated that bridge structures were needed to increase thickness of steel deck plate or to improve longitudinal rib shape. CONCLUSIONS: It has been known that the use of PU can be positively considered to thin layer on long-span orthotropic steel bridge in terms of properties considered marine environment, resistance of fatigue damage and long-term performance.

현장발생 이암계 퇴적암의 보조기층 적용성 평가 (Evaluation of Usability for Sub-base of Muddy Stone produced on Site)

  • 김진철
    • 한국도로학회논문집
    • /
    • 제7권3호
    • /
    • pp.93-100
    • /
    • 2005
  • 도로공사과정에서 발생되는 현장 발생암은 경제성을 고려하여 도로용 재료로 활용되고 있으나 풍화속도가 빠른 퇴적암 골재의 경우 품질기준 적합성 여부를 판단하기 곤란한 경우가 많이 있다. 본 연구는 현장에서 발생된 이암계 퇴적암을 보조기층용 재료로 활용하였을 때 문제점을 고찰한 것이다. 그 결과 마모율은 품질기준을 만족하였으나, 27.5$\sim$16mm 입도 범위에서 중량감소율은 편마암 및 사암의 경우 20$\sim$30%이었으나 이암계 퇴적암은 47%로 매우 높은 값을 나타내었다. 골재의 안정성 시험결과에서는 편마암 및 사암에 비하여 이암계 혼합석이 매우 높게 나타났으며, 동결 및 건조에 의한 촉진 풍화시험에 의한 중량감소율에서도 편마암 및 사암계 혼합석 3.8$\sim$21%에 대하여 이암계 혼합석은 58%를 나타내어 빠른 풍화특성을 나타내었다.

  • PDF

자외선 촉진 내후성 시험에 의한 EPDM Chip을 사용한 탄성포장의 색차분석 (Examination of Color Difference in Elastic Pavement that uses EPDM Chip using Ultraviolet Ray Accelerated Weathering Test)

  • 홍창우
    • 대한토목학회논문집
    • /
    • 제31권1D호
    • /
    • pp.91-98
    • /
    • 2011
  • 최근에 들어 보도나 산책로, 공원 등에 주로 사용되었던 보도블록 및 투수콘크리트 대신 합성고무칩(EPDM Chip)을 사용한 탄성포장이 보행시 충격흡수와 다양한 칼라와 디자인을 연출할 수 있어 사용이 증가되고 있다. 그러나, 자외선에 노출시 합성고무칩의 탄성력, 내구성 등이 저하되고, 황변현상으로 다양한 색상에 의한 경관포장의 기능이 저하되고 있다. 따라서 본 연구에서는 자외선에 노출 시 탄성포장의 주재료인 합성고무칩과 폴리우레탄수지의 색변화를 분석하기 위해 자외선 촉진 내후성 실험을 수행하였다. 그리고 색차계를 이용하여 색공간의 색 수치좌표를 이용하는 방법으로 색차를 정량적으로 분석하였다. 실험결과 기존에 주로 사용되는 BL 폴리우레탄수지의 색변화가 합성고무칩보다 큰 것으로 나타났다. 그리고 BC 폴리우레탄수지의 총색차 ${\Delta}E$가 촉진재령 14일에서 3.162로 BL 폴리우레탄수지의 20.639에 비해 6배 정도 자외선에 대한 색변화 저항성이 높은 것으로 나타났다. 따라서 합성고무칩을 사용하는 탄성포장에서 폴리머 제조시 이소시아네이트를 HMDI로 사용하여 체인형 분자구조를 갖도록 제조된 BC 폴리우레탄수지를 바인더로 사용하는 것이 자외선에 의한 색변화를 억제하는데 매우 효율적인 방법으로 나타났다.

인공경량골재를 활용한 경량 폴리머 콘크리트의 개발 및 바닥배수구조물에의 적용 (Development of Lightweight Polymer Concrete Using Synthetic Lightweight Aggregate and Application for Bottom Draining Structure)

  • 성찬용;김영익;윤준노
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.846-851
    • /
    • 2003
  • This study was performed to develop the lightweight polymer concrete using expanded clay and perlite to improve workability, durability and chemical resistance for bottom draining structure under severe condition. This paper was composed of two parts. One is to invest the physical and mechanical properties of lightweight polymer concrete using synthetic lightweight aggregate, the other is to the develop products for bottom draining structure. Physical and mechanical test for lightweight polymer concrete was performed unit weight, compressive and flexural strength, chemical resistance, accelerated weathering test, absorption ratio and optimum mix for lightweight polymer concrete was designed. Also, products for bottom draining structures by optimum mix of lightweight polymer concrete was made draining trench of small size.

  • PDF

트래킹 휠과 복합열화시험에 의한 폴리머 애자의 성능 평가 (Performance Evaluation of Polymer Insulator using Tracking Wheel and Multi-Aging Test)

  • 조한구;안명상;한세원;허종철;이운용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.119-122
    • /
    • 2000
  • Recently polymer insulators are being used for outdoor high voltage applications. Polymer insulators for transmission line have significant advantages over porcelain and glass insulators, especially for ultra-high voltage transmission lines. Their advantages are light weight, vandalism resistance and hydrophobicity. Polymer insulators are a relatively new technology, but their expected life is still unknown. Therefore these estimating technique are very important. Their life time is related to weathering and operating condition. Multi-aging test is requested because aging factor is occurred by multi-aging than unique aging. The aging test about polymer insulators have mainly carried out by IEC 61109. This paper presents multi-stress chamber experiments and tracking wheel test to examine the tracking and erosion performance of polymer insulator for transmission. Multi-stress testing is able to demonstrate deficiencies of polymer insulator materials and designs, including the nature of interfaces in insulation design. We have investigated IEC 61109 Annex C (5000h aging test) and CEA tracking wheel test as test methods of artificial accelerated aging. The aging degree of polymer insulator is estimated by leakage current, measurement of hydrophobicity degree, damage conditions of insulator surface, withstand voltage test etc.

  • PDF