• Title/Summary/Keyword: Accelerated oxidation

Search Result 177, Processing Time 0.027 seconds

Oxidation Behaviors of Nickel-Base Superalloys in High Temperature Steam Environments (고온 수증기 환경에서 Ni기 초합금의 산화특성)

  • Kim, Donghoon;Koo, Jahyun;Kim, Daejong;Yoo, Young-Sung;Jang, Changheui
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.2
    • /
    • pp.26-33
    • /
    • 2011
  • To evaluate steam oxidation behaviours of Alloy 617 and Haynes 230, oxidation test were performed at $900^{\circ}C$ in steam and $steam+20\;vol.-%\;H_2$ environments. Oxidation rate in steam condition was similar to that in air for Alloy 617, while it was slightly lower for Haynes 230. When hydrogen was added to steam, oxidation rate was enhanced. Isolated $MnTiO_3$ particle were formed on $Cr_2O_3$ oxide layer and sub layer $Cr_2O_3$ were formed in steam and $steam+20\;vol.-%\;H_2$ for Alloy 617. On the other hands, $MnCr_2O_3$ layer were formed on top of $Cr_2O_3$ oxide layer for Haynes 230. The extensive sub layer $Cr_2O_3$ formation was resulted from the oxygen inward diffusion in such environments. When hydrogen was added, the oxide morphology was changed from polygonal to platelet because of the accelerated diffusion of cations under the oxide layer. In addition, decarburized zone was extended as hydrogen participated into the reactions causing carbide dissolution.

Weathering of coal and kerogen : implications on the geochmical carbon and oxygen cycle and the environmental geochemical reactions (탄질 유기물과 케로젠의 풍화 : 탄소와 산소의 지화학적 순환 및 환경화학적 반응에 미치는 영향)

  • 장수범
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.101-111
    • /
    • 1999
  • Sedimentary organic matter, exposed to continental surficial environment, reacts with oxygen supplied from the atmosphee and forms carbon-containing oxidation products. Knowledge of the rate and mechanisms of sedimentary organic matter weathering is important because it is one of the major controls on atmospheric oxygen level through geologic time. Under the abiological conditions, the oxidation rate of coal organic matter by molecular oxygen is enhanced by the increase of oxygen concentration and temperature. At ambient temperature and pressure, aqueous coal oxidation results in the formation of dissolved $CO_2$ dissolved organic carbon and solid oxidation products which are all quantitatively significant reaction products. The effects of pH, ultraviolet light, and microbial activity on the weathering of sedimentary organic matter are poorly contrained. Based on the results of geochmical and environmental studies, it is believed that the photochemical reaction should play an important role in the decomposition and oxidation of sedimentary organic matter removed from the weathering profile. At higher pH conditions, the production rate of DOC can be accelerated due to base catalysis. These high molecular weight oranic matter can react with man-made pollutants such as heavy metal ions via adsorption/desorption or ion exchange reactions. The effect of microbial activity on the oxidative weathering of sedimentary organic matter is poorly understood and remains to be studied.

  • PDF

Investigation on Mechanical Property and Adhesion of Oxide Films Formed on Ni and Ni-Co Alloy in Room and High Temperature Environments

  • Oka, Yoshinori I.;Watanabe, Hisanobu
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.145-151
    • /
    • 2008
  • Material degradation such as high temperature oxidation of metallic material is a severe problem in energy generation systems or manufacturing industries. The metallic materials are oxidized to form oxide films in high temperature environments. The oxide films act as diffusion barriers of oxygen and metal ions and thereafter decrease oxidation rates of metals. The metal oxidation is, however, accelerated by mechanical fracture and spalling of the oxide films caused by thermal stresses by repetition of temperature change, vibration and by the impact of solid particles. It is therefore very important to investigate mechanical properties and adhesion of oxide films in high temperature environments, as well as the properties in a room temperature environment. The oxidation tests were conducted for Ni and Ni-Co alloy under high temperature corrosive environments. The hardness distributions against the indentation depth from the top surface were examined at room temperature. Dynamic indentation tests were performed on Ni oxide films formed on Ni surfaces at room and high temperature to observe fractures or cracks generated around impact craters. As a result, it was found that the mechanical property as hardness of the oxide films were different between Ni and Ni-Co alloy, and between room and high temperatures, and that the adhesion of Ni oxide films was relatively stronger than that of Co oxide films.

A Study on Physical and Electrical Condition Monitoring of Seawater Soaked CSPE (해수오염 된 CSPE의 물리·전기적 상태감시에 관한 연구)

  • Shin, Yong-Deok;Lee, Jeong-U;Jeon, Hwang-Hyun;Kim, In-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1136-1137
    • /
    • 2015
  • The accelerated thermal aging of chlorosulfonated polyethylene (CSPE) was performed for 0 days, 80.82 days, and 161.63 days at $100^{\circ}C$, which is equivalent to 0y, 40y, and 80y of aging, respectively, at $50^{\circ}C$. The volume electrical resistivity of dried CSPE for 570~630 days after seawater and freshwater soaking, are $1.109{\times}10^{14}{\Omega}{\cdot}cm$, $8.546{\times}10^{13}{\Omega}{\cdot}cm$ and $8.466{\times}10^{13}{\Omega}{\cdot}cm$. The applied voltage rising time of 11~12 second and dielectric breakdown time of 9~11 second of the accelerated thermal aged CSPE is shorter than those of 12~13 and 11~13 second of the non-accelerated thermal aged CSPE, respectively. It is shown that oxidation, fragment and crack are formated at hole of dielectric breakdown in CSPE. The apparent density of dried CSPE for 750 days are $1.555g/cm^3$, $1.595g/cm^3$$1.597g/cm^3$ according to accelerated thermal aging year, respectively.

  • PDF

A Study on the Oxidation of Metallic Uranium and Uranium Dioxide in Oxygen Plasma (산소 플라즈마에 의한 금속우라늄과 이산화우라늄 산화 연구)

  • 양용식;서용대;김용수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.9
    • /
    • pp.833-838
    • /
    • 2000
  • 기존의 핵연료재료 습식처리 공정 대체를 위한 건식 처리 공정 기초 연구로서 산소 플라즈마 기체에 의한 금속우라늄과 이산화우라늄의 산화 연구를 수행하였다. 연구결과 산소 플라즈마를 사용할 경우 $UO_2$는 40$0^{\circ}C$에서 약 300% 정도, 50$0^{\circ}C$에서는 70% 정도의 산화율 증가가 일어났으며 금속우라늄의 경우에도 35$0^{\circ}C$에서 50% 정도의 증가를 확인할 수 있었다. 이들 산화율은 플라즈마 출력이 증가함에 따라 비례적으로 증가하였는데 이는 출력 증가에 따른 플라즈마내 산소 원자의 발생과 일치하여 이러한 산화율 증가 현상은 플라즈마내 산소 원자가 주도하는 것으로 드러났다. 이들 실험 결과는, 기존의 실험 결과와 길이, 시간에 따라 산화량이 선형적으로 증가하는 것으로 나타나 산소 플라즈마 산화 반응은 표면 반응이 주요 반응이라는 것이 밝혀졌다.

  • PDF

Carbon Corrosion at Pt/C Interface in Proton Exchange Membrane Fuel Cell Environment

  • Choi, Min-Ho;Beom, Won-Jin;Park, Chan-Jin
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.281-288
    • /
    • 2010
  • This study examined the carbon corrosion at Pt/C interface in proton exchange membrane fuel cell environment. The Pt nano particles were electrodeposited on carbon substrate, and then the corrosion behavior of the carbon electrode was examined. The carbon electrodes with Pt nano electrodeposits exhibited the higher oxidation rate and lower oxidation overpotential compared with that of the electrode without Pt. This phenomenon was more active at $75^{\circ}C$ than $25^{\circ}C$. In addition, the current transients and the corresponding power spectral density (PSD) of the carbon electrodes with Pt nano electrodeposits were much higher than those of the electrode without Pt. The carbon corrosion at Pt/C interface was highly accelerated by Pt nano electrodeposits. Furthermore, the polarization and power density curves of PEMFC showed degradation in the performance due to a deterioration of cathode catalyst material and Pt dissolution.

High-Temperature Oxidation of Ti Containing Stainless Steel in O2-N2 Atmosphere

  • Onishi, Hidenori;Saeki, Isao;Furuichi, Ryusaburo;Okayama, Toru;Hanamatsu, Kenko;Shibayama, Tamaki;Takahashi, Heishichiro;Kikkawa, Shinichi
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.140-147
    • /
    • 2004
  • High temperature oxidation of Fe-19Cr and Fe-19Cr-0.2Ti alloys is studied at 1173-1373 K in 16.5 kPa $O_2$ - balances $N_2$ atmosphere aimed at clarifying the effect of titanium addition. Oxidation rate of Fe-19Cr alloy was accelerated with titanium. For both alloys chromium rich $(Fe,\;Cr)_2O_3$ was formed as a major oxidation product. On Fe-19Cr-0.2Ti alloy, a thin layer composed of spinel type oxide and titanium oxide was also formed and an internal oxidation of titanium was observed. Titanium was concentrated at the oxide surface and internal oxidation zone but a small amount of titanium was also found in the intermediate corundum type $(Fe,\;Cr)_2O_3$ layer. Crystals of corundum type $(Fe,\;Cr)_2O_3$ formed on Fe-19Cr alloy are coarse but that formed on Fe-19Cr -0.2Ti alloys were fine and columnar. Reason for the difference in oxidation kinetics and crystal structure will be discussed relating to the distribution of aliovalent titanium in corundum type $(Fe,\;Cr)_2O_3$ oxide layer.

Application of Bayer-Villiger Reaction to the Synthesis of Dibenzo-18-crown-6, Dibenzo-21-crown-7 and Dihydroxydibenzo-18-crown-6

  • Utekar, Druman R.;Saman, Shriniwas D.
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.2
    • /
    • pp.193-197
    • /
    • 2014
  • Dibenzo-18-crown-6, dibenzo-21-crown-7 and dihydroxy dibenzo-18-crown-6 were synthesized by Bayer-Villiger oxidation strategy. Dibenzo-18-crown-6 and dibenzo-21-crown-7 could be synthesized through a three-step protocol starting from salicylaldehyde. Salicylaldehyde was reacted with bis-(2-chloroethyl)ether using $K_2CO_3$ in acetonitrile to link the two phenolic groups with the oxyethylene bridge followed by conversion of the formyl group to the hydroxy group via a Baeyer-Villiger reaction and finally linking the two phenolic group with appropriate oxyethylene bridge. The two target crown ethers were obtained in overall yield, 24% and 30%, respectively. This method has a great potential for synthesis of symmetrical as well as unsymmetrical dibenzo crowns with varying oxyethylene bridges. Baeyer-Villiger oxidation could be used to prepare dihydroxy derivative of dibenzo-18-crown-6 through acetylation of dibenzo-18-crown-6 followed by Baeyer-Villiger oxidation. The Baeyer-Villiger oxidation could be substantially accelerated using trifluoroacetic acid.

Modification of Oxidation Wool Treated with Protease(Part I)-Changes of chemical properties (산화양모의 효소처리에 의한 양모섬유의 개질(제1보)-화학적 성질의 변화-)

  • 김영리;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.7
    • /
    • pp.843-850
    • /
    • 1998
  • The purpose of this study is the investigation of chemical properties of wool treated with oxidants and protease at low temperature. The chemical degradation of the fibers were investigated by measuring $\alpha$-amimo acid contents and FT-IR analysis. In addition, urea-hydrogensulfite solubility was measured to compare to the oxidation and protease treated wool. The results were as follows. 1) By the oxidation of wool, cystine is oxidised to cysteic acid by way of the intermediate oxides, cystine-S-monooxide and cystine-S-dioxide, in the case hydrolysis catalysed by the protease catalyse. Also, $\alpha$-amimo acid contents is increased, and urea-hydrogensulfite solubility was lower than that of untreated wool. This chemical degradation of wool was occurred due to oxidate hydrolysis in the order of permonosulfate>dichloroisocyanuric acid$\geq$chlorine. 2) The chemical degradation of wool was accelerated by the protease treatment of oxidized wool. Oxidation of wool is considered to make the fiber more susceptibled to enzymatic attact by opening disulphide bond within wool. Enzymatic attact was effectively directed to the wool oxidised by permonosulfate.

  • PDF

Cu,Zn-Superoxide Dismutase Is an Intracellular Catalyst for the H2O2-dependent Oxidation of Dichlorodihydrofluorescein

  • Kim, Young-Mi;Lim, Jung-Mi;Kim, Byung-Chul;Han, Sanghwa
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.161-165
    • /
    • 2006
  • Dichlorodihydrofluorescein ($DCFH_2$) is a widely used probe for intracellular $H_2O_2$. However, $H_2O_2$ can oxidize $DCFH_2$ only in the presence of a catalyst, whose identity in cells has not been clearly defined. We compared the peroxidase activity of Cu,Zn-superoxide dismutase (CuZnSOD), cytochrome c, horseradish peroxidase (HRP), $Cu^{2+}$, and $Fe^{3+}$ under various conditions to identify an intracellular catalyst. Enormous increase by bicarbonate in the rate of $DCFH_2$ oxidation distinguished CuZnSOD from cytochrome c and HRP. Cyanide inhibited the reaction catalyzed by CuZnSOD but accelerated that by $Cu^{2+}$ and $Fe^{3+}$. Oxidation of $DCFH_2$ by $H_2O_2$ in the presence of a cell lysate was also enhanced by bicarbonate and inhibited by cyanide. Confocal microscopy of $H_2O_2$-treated cells showed enhanced DCF fluorescence in the presence of bicarbonate and attenuated fluorescence for the cells pre-incubated with KCN. Moreover, DCF fluorescence was intensified in CuZnSOD-transfected HaCaT and RAW 264.7 cells. We propose that CuZnSOD is a potential intracellular catalyst for the $H_2O_2$-dependent oxidation of $DCFH_2$.