## 해수오염 된 CSPE의 물리•전기적 상태감시에 관한 연구

**신용덕**\*, 이정우\*, 전황현\*, 김인용\*\* 원광대학교\*, 한국원자력안전기술원\*\*

### A Study on Physical and Electrical Condition Monitoring of Seawater Soaked CSPE

Yong-Deok Shin\*, Jeong-U Lee\*, Hwang-Hyun Jeon\* and In-Yong Kim\*\* Wonkwang University\*, KINS\*\*

**Abstract** - The accelerated thermal aging of chlorosulfonated polyethylene (CSPE) was performed for 0 days, 80.82 days, and 161.63 days at 100°C, which is equivalent to 0y, 40y, and 80y of aging, respectively, at 50°C. The volume electrical resistivity of dried CSPE for 570~630 days after seawater and freshwater soaking ,are  $1.109 \times 10^{14} \,\Omega \cdot cm$ ,  $8.546 \times 10^{13} \,\Omega \cdot cm$ . The applied voltage rising time of  $11 \sim 12$  second and dielectric breakdown time of  $9 \sim 11$  second of the accelerated thermal aged CSPE is shorter than those of  $12 \sim 13$  and  $11 \sim 13$  second of the non-accelerated thermal aged CSPE is shown that oxidation, fragment and crack are formated at hole of dielectric breakdown in CSPE. The apparent density of dried CSPE for 750 days are  $1.555 \text{ g/cm}^3$ ,  $1.595 \text{ g/cm}^3 \cong 1.597\text{ g/cm}^3$  according to accelerated thermal aging year, respectively.

#### 1.서 론

원전안전설비를 운전하기 위한 전력과 신호를 전달하는 매우 중요한 설비인 케이블은 발전소에서 경년열화 설비 중 다량을 차지한다. 원전 케이블은 교체 시 많은 시간과 비용을 필요로 하고 교체시기가 어렵기 때문에 정확한 잔존수명 예측을 통한 적기 교체시기를 수립하는 등의 최적의 열화평가 기술개발이 꾸준히 요구되고 있다.[1]

본 연구에서는 원전 케이블로 상용되고 있는 CSPE(chloro sulfonate polyethylene)를 표 1에 나타난 바와 같이 운전온도 50℃ 가상하여 10 0℃에서 가속열화 하였다. 가속열화 되지 않은 CSPE와 가속열화 된 것을 각각 해수·담수 침지 후 체적전기저항률, 유전체강도, 겉보기밀도 측정 및 절연파괴 부위의 FE-SEM 분석 하여 물리적, 전기적 상태감시 를 연구하고자 한다.

## 2. 본 론

#### 2.1 시편제작

CSPE(Taihan Electric Wire Co., Ltd.)를 설정온도 100℃ 의 열적 다 단형 전기 가열로에 넣고 표 1과 같이 해당되는 시간동안(d) 가속열화 하였다. 가상 운전에 맞는 실제 가속 열화 시간은 KEPRI의 가속열화 프로그램에 의한 가상운전 온도 50℃에 의해 설계되었다.

<표 1> 운전지속시간에 따른 CSPE의 가속열화 시간 <Table 1> Accelerated aging time of a CSPE according to operating duration time

| 운전지속<br>시간 (y) | 가속열화<br>온도 (℃) | 가속열화<br>시간 (d) | 비고             |
|----------------|----------------|----------------|----------------|
| 0              | -              | -              | 리아이카           |
| 40             | 100            | 80.82          | 가상운선<br>오도·50℃ |
| 80             | 100            | 161.63         |                |

#### 2.2 해수·담수 침지

영광원자력 발전소의 해수와 전주 맑은 물 사업소의 담수를 각각 채 취하여 5일 동안 침지하였다. 채취한 해수·담수의 성분은 국립수산과학 원과 전주 맑은 물 사업소에 의뢰하여 분석 하였다.

해수의 경우 PH 8.00, 염분 32.10% 총질소 0.467mg/L, 총인 0.035mg/L의 성분이고, 담수의 경우 질산성질소 2.0mg/L, 경도 55mg/L, 수소이온농도 6.9mg/L, 염소이온 9mg/L, 증발잔류물 86mg/L, 황산이온 7mg/L 등의 성분을 나타내었다.

#### 2.3 3단자-체적전기저항률

가속열화 CSPE의 해수•담수 침지 후 체적전기저항률은 KSM3015 에 의거하여 설계·제작한 3단자-체적전기저항률 측정시스템[2]을 이용 하여 측정 하였다.

가속열화에 따른 CSPE의 해수 • 담수 침지 후 0y, 40y 및 80y의 체 적전기저항률은 그림 1에 나타난 바와 같이 각각 1.109×10<sup>14</sup>  $\Omega$  • cm, 8.546×10<sup>13</sup>  $\Omega$  • cm 및 8.466×10<sup>13</sup>  $\Omega$  • cm 이다. 해수 • 담수 침지 후 가속열화 된 40y과 80y CSPE의 체적전기저항률은 가속열화가 되지 않 은 0y보다는 낮게 나타나고 있다. 가속열화 후 CSPE의 측쇄(branch chain or side group)가 먼저 끊어지고 주쇄(main chain or back bone) 의 일부가 끊어지거나 느슨해진 것으로 생각된다.



〈그림 1〉가속열화에 따른 CSPE의 체적전기저항률 〈Fig. 1〉 Volume electrical resistivity of CSPE as accelerated thermal aged year

#### 2.4 유전체강도

Break down voltage tester(SM-60BDV)[3]을 이용하여 인가상승시간 에 따른 최대유전체강도를 측정하였다.

그림 2에 나타난 바와 같이 가속열화 되지 않은 CSPE의 해수 • 담수 침지 후 applied voltage rising time[sec]과 dielectric breakdown time[sec]은 12~13 및 11~13초 이고, 가속열화 된 CSPE의 해수 • 담수 침지 후 applied voltage rising time[sec]과 dielectric breakdown time[sec]은 각각 10~11 및 8~11초와 11~12 및 9~11초 이다. applied voltage rising time[sec]과 dielectric breakdown time[sec]은 가속열화 된 CSPE보다 가속열화 되지 않은 CSPE가 더 길게 나타나고 있다.





(c) CSPE-80y 〈그림 2〉가속열화에 따른 CSPE의 유전체 강도 〈Fig. 2〉Dielectric strength of CSPE as accelerated thermal aged year

# 2.5 절연파괴 부위의 FE-SEM(Field emission scanning electron microscope)

CSPE의 절연파괴 부위의 구조 분석은 전계 방출 형 주사 전 자 현미경(FE-SEM, Hitachi & Horiba/S4800& EDS, Japan)을 사용하여 분석하였다.

그림 3에 나타난 바와 같이 절연파괴 hole 내부 및 주위에서의 산 화반응(oxidation), 파편(fragment), 크랙(crack)등을 볼 수 있다.



<그림 3> 가속열화에 따른 CSPE 절연파괴의 FE-SEM <Fig. 3> FE-SEM of dielectric breakdown of CSPE as accelerated thermal aged year.

#### 2.6 겉보기밀도

CSPE 겉보기밀도(apparent density) 측정은 증류수를 이용한 아르키메 데스의 원리(Archimedes' principle)를 이용하여 각 시편 당 9회를 측정 하였다. 물의 밀도를 보정하기 위해 물의 온도(SDT8A, Summit Co. Ltd., Korea)를 측정하였고, 질량은 전자저울(AR3130, Ohaus, Chaina)을 이용하였다.

그림 4에 나타난 바와 같이 가속열화에 따른 CSPE의 해수•담수 침지 후 0y, 40y 및 80y의 겉보기밀도는 그림 3에 나타난 바와 같이 각각 1.555 g/cm<sup>3</sup>, 1.595 g/cm<sup>3</sup> 및 1.597g/cm<sup>3</sup>이다.



<그림 4> 가속열화에 따른 CSPE의 겉보기밀도 <Fig. 4> Apparent density of CSPE as accelerated thermal aged year

#### 3. 결 론

1) 가속열화 넌 수에 따라 CSPE의 체적전기저항률이 낮아진다. 가속열 화 후 CSPE의 측쇄(branch chain or side group)가 먼저 끊어지고 주쇄 (main chain or back bone)의 일부가 끊어지거나 느슨해진 것으로 생각 된다.

2) 가속열화 된 CSPE 보다 가속열화 되지 않은 것 의 applied voltage rising time[sec]과 dielectric breakdown time[sec]이 길게 나타난다.

3) 절연파괴 부위의 FE-SEM의 hole 내부 및 주위에서의 산화반응 (oxidation), 파편(fragment), 크랙(crack)등이 보인다.

4) CSPE polymer의 점성액체 분과 고무질 분이 점점 줄어들어 강체 성 분이 높아져서 겉보기 밀도가 증가한 것으로 생각된다.

따라서 CSPE의 체적전기저항률, 겉보기밀도는 가속열화 넌 수에 의 존하는 것으로 판단된다. 그 외 유전체강도, 절연파괴 부위의 FE-SEM 의 대한 조사 연구는 계속 진행하고자 한다.

# 본 연구는 2015년도 한국방사선안전재단의 원자력안전연구 사업의 지원으로 수행된 연구임.

## [참 고 문 헌]

- Y. D Shin, J. H Lee, C. S Goo, I. Y Kim and B. S Jin, "Dffects on Measuring Temperature of Volume Electrical Resistivity of the Accelerated Thermal Aging CSPE", KIEE summer conference, 2012.
- [2] Patent number 10-1328994, 2013.
- [3] Sungmin instruments, Break Down Voltage Tester(SM-60BDV), 2007