• Title/Summary/Keyword: Accelerated degradation experiment

Search Result 32, Processing Time 0.019 seconds

Study on the Tracking Characteristics Depending on Accelerated Degradation of PVC Insulation Material (PVC 절연재료의 가속열화에 따른 트래킹 특성에 관한 연구)

  • Choi, Su-Gil;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.91-98
    • /
    • 2017
  • The present paper is a study on the tracking characteristics depending on accelerated degradation of PVC insulation material. In order to insulation degradation of PVC insulation material, the Arrhenius equation, a type of accelerated degradation test formula, was used to conduct accelerated degradation experiments with experiment samples prepared at the following age equivalents: 0, 10, 20, 30 and 40 years. Afterwards, a tracking experiment was conducted on the accelerated experiment samples as part of the KS C IEC 60112 criteria. When measuring the PVC tracking features according to the accelerated aging, the results showed that when 0.1% of ammonium chloride was added to the PVC insulating material, but no tracking occurred. However, depending on the age equivalent, The results of analyzing the current waveform and voltage waveform of the tracking propagation process showed the age equivalent from 0 years to 40 years displayed a break down in insulation resistance and even the BDB(before dielectric breakdown) sections did not maintain the same functionality of the original material. Based on a criterion of an age equivalent of 0 years, material with an age equivalent of 10 years posed a 1.4 times greater risk, material with an age equivalent of 20 years posed a 2 times greater risk, material with an age equivalent of 30 years posed a 4.6 times greater risk, and material with an age equivalent of 40 years posed a 7 times greater risk.

A Study on the Tracking Characteristics of Phenolic Resin Insulation Material Due to Accelerated Degradation (가속열화에 따른 페놀수지 절연재료의 트래킹 특성에 관한 연구)

  • Kim, Si-Kuk;Choi, Su-Gil;Lee, Chun-Ha
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.42-49
    • /
    • 2017
  • The present article reports the tracking characteristics of phenolic resin insulation material due to accelerated degradation. For assessing insulation degradation of the phenolic resin insulation material, experiment samples with equivalent years of 0, 10, 20, 30, and 40 years were produced by conducting accelerated degradation experiments using Arrhenius equation. Subsequently, tracking experiments according to KS C IEC 60112 standard were conducted for the experiment samples that were previously subjected to accelerated degradation. According to the measured results for tracking characteristics of phenolic resin subjected to accelerated degradation, upon dropping of 0.1% ammonium chloride, the risks were shown to increase by 1.38 times for the equivalent life of 10 years; 1.45 times for 20 years; 1.62 times for 30 years; and 1.94 times for 40 years based on the equivalent life of 0 year. Upon dropping of 0.01% ammonium chloride, the risks were shown to increase by 1.39 times for the equivalent life of 10 years; 1.52 times for 20 years; 1.99 times for 30 years; and 5.30 times for 40 years. According to the experimental results, the tracking risk was shown to be higher for longer-duration insulation degradation due to aging. In particular, the risk was observed to be greatly increased in the case of the equivalent life of 40 years. Therefore, it is proposed that the occurrence possibility and the risk of electric fires could be minimized through institutional preparation of recommended replacement period by considering risks such as insulation degradation, etc. due to aging.

Effect of Evaluation Conditions on Electrochemical Accelerated Degradation of PEMFC Polymer Membrane (PEMFC 고분자 막의 전기화학적 가속 열화에 미치는 평가조건들의 영향)

  • Sohyeong Oh;Donggeun Yoo;Suk Joo Bae;Sun Geu Chae;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.356-361
    • /
    • 2023
  • In order to improve the durability of the proton exchange membrane fuel cell (PEMFC), it is important to accurately evaluate the durability of the polymer membrane in a short time. The test conditions for chemically accelerated durability evaluation of membranes are high voltage, high temperature, low humidity, and high gas pressure. It can be said that the protocol is developed by changing these conditions. However, the relative influence of each test condition on the degradation of the membrane has not been studied. In chemical accelerated degradation experiment of the membrane, the influence of 4 factors (conditions) was examined through the factor experiment method. The degree of degradation of the membrane after accelerated degradation was determined by measuring the hydrogen permeability and effluent fluoride ion concentration, and it was possible to determine the degradation order of the polymer membrane under 8 conditions by the difference in fluoride ion concentration. It was shown that the influence of the membrane degradation factor was in the order of voltage > temperature > oxygen pressure > humidity. It was confirmed that the degradation of the electrode catalyst had an effect on the chemical degradation of the membrane.

Corrosion Performance of Cu Bonded Grounding-Electrode by Accelerated Corrosion Test

  • Choi, Sun Kyu;Kim, Kyung Chul
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.211-217
    • /
    • 2018
  • Natural degradation of grounding-electrode in soil environment should be monitored for several decades to predict the lifetime of the grounding electrode for efficient application and management. However, long-term studies for such electrodes have many practical limitations. The conventional accelerated corrosion test is unsuitable for such studies because simulated soil corrosion process cannot represent the actual soil environment. A preliminary experiment of accelerated corrosion test was conducted using existing test standards. The accelerated corrosion test that reflects the actual soil environment has been developed to evaluate corrosion performances of grounding-electrodes in a short period. Several test conditions with different chamber temperatures and salt spray were used to imitate actual field conditions based on ASTM B162, ASTM B117, and ISO 14993 standards. Accelerated degradation specimens of copper-bonded electrodes were made by the facile method and their corrosion performances were investigated. Their corrosion rates were calculated to $0.042{\mu}m/day$, $0.316{\mu}m/day$, and $0.11{\mu}m/day$, respectively. These results indicate that accelerated deterioration of grounding materials can be determined in a short period by using cyclic test condition with salt spray temperature of $50^{\circ}C$.

Non-destructive Evaluation Method for Service Lifetime of Chloroprene Rubber Compound Using Hardness

  • Park, Kwang-Hwa;Lee, Chan-Gu;Park, Joon-Hyung;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.124-135
    • /
    • 2021
  • Evaluating service lives of rubber materials at certain temperatures requires a destructive method (typically using elongation at break). In this study, a non-destructive method based on hardness change rate was proposed for evaluating the service life of chloroprene rubber (CR). Compared to the destructive method, this non-destructive method ensures homogeneity of CR specimens and requires a small number of samples. Thermal accelerated degradation test was conducted on the CR specimens at 55, 70, 85, 100, and 125℃, and the tensile strength, elongation at break, and hardness were measured. The results of the experiment were compared to those of the accelerated life evaluation method proposed in this study. Comparing the analyzed lives in the high temperature region (70, 85, 100, and 125℃), the difference between the service lives for the destructive method (using the elongation at break) and non-destructive method (using the hardness) was approximately 0.1 year. Therefore, it was confirmed that the proposed non-destructive evaluation method based on hardness changes can evaluate the actual life of CR under thermally accelerated degradation conditions.

Degradation and hole formation of the Te-based thin films (Te을 기본으로 한 박막에서의 열화와 미세구멍형성에 관한 연구)

  • Lee, Hyun-Young;Park, Tae-Sung;Um, Jeong-Ho;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.207-209
    • /
    • 1987
  • This paper reports the effect of additive elements such as Bi, Sb on degradation and hole formation of the Te-Se thin films. Changes in light transmission were used to monitor the degradation rate of thin Te films in an accelerated temperature-humidity environment. In thin accelerated temperature-humidity environment, $(Te_{86}Se_{14})_{70}Bi_{30}$ thin film was stable and $(Te_{86}Se_{14})_{50}Sb_{50}$ thin film was unstable in comparison with the other films that used in this experiment. The hole formation was carried out in the Te-based thin films.

  • PDF

A Kinetic Study of Thermal Degradations of Chitosan/Polycaprolactam Blends

  • Liao, Shen-Kun;Hung, Chi-Chih;Lim, Ming-Fung
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.466-473
    • /
    • 2004
  • We have used FT-IR spectra to explain the effects of hydrogen bonding between chitosan and polycaprolactam (PA6). A dynamic mechanical analysis study suggested that the optimum chitosan and PA6 miscibility under the conditions of this experiment were obtained at a blending ratio of 40:60. We studied the thermal degradation of chitosan blended with PA6 (chitosan/PA6) by thermogravimetric analysis and kinetic analysis (by the Ozawa method). Dry chitosan and PA6 exhibited a single stage of thermal degradation and chitosan/PA6 blends having> 20 wt% PA6 exhibited at least two stages of degradation. In chitosan/PA6 blends, chitosan underwent the first stage of thermal degradation; the second stage proceeded at a temperature lower than that of PA6, because the decomposition product of chitosan accelerated the degradation of PA6. The activation energies of the blends were between 130 and 165 kJ/mol, which are also lower than that of PA6.

Effect of Varous Physicochemical Factors on the Biodegradation of Explosive 2,4,6-Trinitrotoluene by Stenotropomonas maltophilia (Stenotrophomonas maltophilia에 의한 폭약 2,4,6-Trinitrotoluene의 생분해에 영향을 미치는 물리화학적 요인)

  • 김영진;이명석;조윤석;한현각;김승기;오계헌
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.315-321
    • /
    • 1999
  • The relationships between the explosive 2,4,6-trinitrotoluene (TNT) degradation by Stenotrophomonas maltophilia and several relevant physicochemical environmental parameters were examined. At neutral pH of the cultures, the degradation of TNT proceeded to completion, whereas only about 50% of TNT was utilized when the cultures were adjusted to acidic pH. The effect of various co-substrates (e.g., glucose, fructose, acetate, citrate, succinate) on the degradation of TNT by the test culture of S. maltophilia was evaluated. The results indicated that, among the various co-substrates studies, the test culture that received 2 mM fructose degraded 100 mg/L of TNT completely within 20 days of incubation at ambient temperature, whereas partial degradation of TNT was observed in the test culture with acetate, citrate, or succinate as a co-substrate, respectively. In fact, fructose was the best co-substrate for TNT degradation in this experiment. The effect of supplemented nitrogens [e.g., (NH$_4$)$_2$,SO$_4$, NH$_4$Cl. urea] on the TNT degradation was monitored. All supplemented nitrogens in this study were inhibitory to TNT degradation. Addition of 1% Tween80 accelerated TNT degradation, and showed complete degradation of TNT within 8 days of incubation. Addition of yeast extract resulted higher growth yields, based on turbidity measurement, but it inhibited TNT degradation.

  • PDF

Analysis of Insulation Characteristics for Transformer Insulating Materials According to Thermal Degradation (열 열화에 따른 변압기 절연물의 절연특성 분석)

  • Lee, Min-Gu;Shim, Jae-Myung;Lim, Kyung-Bum;Lee, Dae-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1688-1693
    • /
    • 2016
  • In this study shall investigate the influence upon the electrical property of transformer oil due to the heat among accelerated heat degradation experiment for a constant hour in the typical insulation oils of mineral base oil, silicon base oil and vegetable oil. In addition, the electric insulation performance of insulation materials in transformer shall be evaluated through the electric property analysis according to the heat degradation of epoxy insulation material, which has been used for electric facilities such as a molded transformer.

Mechanical Properties and Statistical Evaluation of EPR According to the Accelerated Degradation (EPR의 가속 열화에 의한 기계적 특성 및 통계적 평가)

  • Kim, Ji-Yeon;Yang, Jong-Suk;Lee, Gil-Soo;Seong, Baek-Yong;Bang, Jeong-Hwan;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.8
    • /
    • pp.501-507
    • /
    • 2015
  • In this paper, EPR (ethylene propylene rubber) insulation material was accelerated degradation test at $121^{\circ}C$, $136^{\circ}C$, $151^{\circ}C$, and experiment the typical EAB (elongation at break) at mechanical characteristics analysis. It is shown that the failure-time at the point of 50% of the initial value of Elongation rate to obtain the activation energy. The failure-time was shown each 5,219 hr, 3,165 hr, and 668 hr at three temperatures. In order to derive the activation energy, Arrhenius methodology was applied. Also, we got the Arrhenius plot from three accelerated temperatures. The activation energy values got 0.98 eV from EAB test. The experimental data were evaluated for estimating the probability density, and the suitable distribution by using statistical program MINITAB. It is shown that EAB data by the acceleration thermal degradation is most suitable for the Weibull distribution.