• Title/Summary/Keyword: Accelerated Factor

Search Result 441, Processing Time 0.023 seconds

Inference for exponentiated Weibull distribution under constant stress partially accelerated life tests with multiple censored

  • Nassr, Said G.;Elharoun, Neema M.
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.131-148
    • /
    • 2019
  • Constant stress partially accelerated life tests are studied according to exponentiated Weibull distribution. Grounded on multiple censoring, the maximum likelihood estimators are determined in connection with unknown distribution parameters and accelerated factor. The confidence intervals of the unknown parameters and acceleration factor are constructed for large sample size. However, it is not possible to obtain the Bayes estimates in plain form, so we apply a Markov chain Monte Carlo method to deal with this issue, which permits us to create a credible interval of the associated parameters. Finally, based on constant stress partially accelerated life tests scheme with exponentiated Weibull distribution under multiple censoring, the illustrative example and the simulation results are used to investigate the maximum likelihood, and Bayesian estimates of the unknown parameters.

The Study on the Acceleration Factor of Coastal Outdoor Corrosion test, Salt Spray Test and Accelerated Corrosion Test using 0.5wt% carbon steel (0.5wt% 탄소강을 이용한 해안 야외부식시험과 염수분무시험, 가속부식시험의 가속계수에 대한 연구)

  • Cho, E.Y.;Gwon, G.B.;Cho, D.H.;Kim, J.Y.
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.209-214
    • /
    • 2013
  • In the industry, accelerated corrosion test is used for the life time prediction. When anti-corrosion test proceeds in real environments, it is difficult that we predict and evaluate the corrosion life time because of the long test time such as 10 years or more time. Accelerated corrosion test and Salt spray test are able to test corrosion life time of products in the laboratory instead of outdoor corrosion test. Experimental procedure is selected for the corrosion standard specimen, exposure of the specimens, measurements of the mass loss and evaluating the mass loss data. As a result, the acceleration factor of the accelerated corrosion test to the outdoor corrosion test is 414.8. Therefore we can predict the corrosion life time of carbon steel during a short time period.

Comparison of Proportional Hazards and Accelerated Failure Time Models in the Accelerated Life Tests

  • Jung, H.S.
    • International Journal of Reliability and Applications
    • /
    • v.10 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • In the accelerated tests, the importance of correct failure analysis must be strongly emphasized. Understanding the failure mechanisms is requisite for designing and conducting successful accelerated life test. Under this presumption, a rational method must be identified to relate the results of accelerated tests quantitatively to the reliability or failure rates in use conditions, using a scientific acceleration transform. Most widely used models for relating the results of accelerated tests quantitatively to the reliability or failure rates in use conditions are an accelerated failure time model and a proportional hazards model. The purpose of this research is to compare the usability of the accelerated failure time model and proportional hazards model in the accelerated life tests.

  • PDF

Evaluation of Life Time for Anti-Corrosive Methods for Marine Steel Sheet by Cyclic Corrosion Test (실내 가속부식시험을 통한 해양 강관합성 말뚝의 방식 기법 수명 평가)

  • Park, J.W.;Lee, J.G.;Lee, K.W.;Kim, J.H.;Jung, M.K.;Lee, J.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.243-250
    • /
    • 2009
  • When a steel sheet pipe applied to marine environment, an anti-corrosive coating should be treated to obtain long-term life-time for steels, especially, splash zone. Although anti-corrosive property of coatings is required to be tested in real marine environment, it is difficult because of long test time such as 20 years or more time. Therefore, we used cyclic corrosion tester in a laboratory, which has similar conditions with salt-dry-wet process such as real marine environment. Anti-corrosive properties of the coatings and two steels were tested their anti-corrosive properties under cyclic corrosion test conditions(KS D ISO 14993) and the results were compared with estimate life-time in real marine environment. According to cyclic corrosion test, accelerated corrosive factor of each anti-corrosive coating was investigated accelerated corrosive factor from impedance with EIS method. Accelerated corrosive factor of type SS400 carbon steel and A690 was also investigated their accelerated corrosive factor from the regression curves of weigh loss results. One of the anti-corrosive coatings showed about 50 years life-time compared with standard sample life-time. Carbon steel SS400 showed from 0.1 mm/yr to 0.06 mm/yr as its corrosion rate.

Study on the Accelerated Test Condition of Pneumatic Cylinder (공기압 실린더 가속시험 조건에 대한 연구)

  • Kang, Bo-Sik;Kim, Hyoung-Eui;Gobin, Remi
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1648-1651
    • /
    • 2007
  • The goal of this paper is to introduce two methods to determine a model for the accelerated factor equation for pneumatic cylinder according to the Black equation shape. The loads consist of working pressure and temperature and we adjust these two parameters to reduce the test time but keeping the true behavior of deterioration. The first part will introduce a method using accelerated factor coming from experimental results to determine the coefficient of the Black equation by the method of the least square theory. The second part will introduce another method based on various conditions of test with the assumption that the effect of temperature and the effect of pressure on the life of pneumatic cylinder are independent. In these two cases, the results are the unknown coefficients of the Black equation.

  • PDF

A Study on the Fatigue Characteristics of Accelerated Cooled TMCP Steel's Welded Joint with High Heat Input (가속냉각형 TMCP강재 대입열 용접부의 피로특성)

  • 윤중근;김희진
    • Journal of Welding and Joining
    • /
    • v.6 no.1
    • /
    • pp.28-34
    • /
    • 1988
  • The fatigue test was carried out to evaluate the fatigue characteristics of the accelerated cooled (ACC) TMCP steel and its welded joint. From this study, it was confirmed that ACC TMCP steel has higher fatigue strength than conventional steels. After welding, however, the fatigue strength of ACC TMCP steel was deteriorated associated with HAZ softening when weld reinforcement was removed. On the other hand, with weld reinforcement, there is no effect of HAZ softening on the fatigue strength of welded joint because it is strongly dependant on the detail weld geometry i.e., stress concentration factor. Accordingly the fatigue strength of actual welded joint increases with decreasing the stress concentration factor of welded joint, regardless of HAZ softening.

  • PDF

A Study on Accelerated Life Test of Halogen Lamps for Medical Device (의료용 할로겐램프의 가속수명시험에 관한 연구)

  • Jung, Jae Han;Kim, Myung Soo;Lim, Heonsang;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.4
    • /
    • pp.659-672
    • /
    • 2013
  • Purpose: The purpose of this study was to estimate life time of halogen lamps and acceleration factors using accelerated life test. Methods: Voltage was selected as an accelerating variable through the technical review about failure mechanism. The test was performed at 14.5V, 15.5V and 16.5 for 4,471 hours. It was assumed that the lifetime of Halogen lamps follow Weibull distribution and the inverse power life-stress relationship models. Results: Mean lifetimes of pin and screw types were 19,477 hours and 6,056 hours, respectively. In addition, acceleration factor of two items are calculated as 4.8 and 2.2 based on 15.5V, respectively. Conclusion: The life-stress relationship, acceleration factor, and MTTF at design condition are estimated by analyzing the accelerated life test data. These results suggest that voltage was very important factor to accelerate life time in the case of halogen lamps and the life time of pin type is three times longer than screw type lamps.

Study of Thermal Ageing Behavior of the Accelerated Thermally Aged Chlorosulfonated Polyethylene for Thermosetting Analysis (열경화성 분석을 위한 가속열화 된 Chlorosulfonated Polyethylene의 경년특성 연구)

  • Shin, Yong-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.800-805
    • /
    • 2017
  • The accelerated thermal ageing of CSPE (chlorosulfonated polyethylene) was carried out for 16.82, 50.45, and 84.09 days at $110^{\circ}C$, equivalent to 20, 60, and 100 years of ageing at $50^{\circ}C$ in nuclear power plants, respectively. As the accelerated thermally aged years increase, the insulation resistance and resistivity of the CSPE decrease, and the capacitance, relative permittivity and dissipation factor of those increase at the measured frequency, respectively. As the accelerated thermally aged years and the measured frequency increase, the phase degree of response voltage vs excitation voltage of the CSPE increase but the phase degree of response current vs excitation voltage decrease, respectively. As the accelerated thermally aged years increase, the apparent density, glass transition temperature and the melting temperature of the CSPE increase but the percent elongation and % crystallinity decrease, respectively. The differential temperatures of those are $0.013-0.037^{\circ}C$ and, $0.034-0.061^{\circ}C$ after the AC and DC voltages are applied to CSPE-0y and CSPE-20y, respectively; the differential temperatures of those are $0.011-0.038^{\circ}C$ and $0.002-0.028^{\circ}C$ after the AC and DC voltages are applied to CSPE-60y and CSPE-100y, respectively. The variations in temperature for the AC voltage are higher than those for the DC voltage when an AC voltage is applied to CSPE. It is found that the dielectric loss owing to the dissipation factor($tan{\delta}$) is related to the electric dipole conduction current. It is ascertained that the ionic (electron or hole) leakage current is increased by the partial separation of the branch chain of CSPE polymer as a result of thermal stress due to accelerated thermal ageing.

A Study of Life Characteristics of Butterfly Valve Seated Rubber by Accelerated Life Test (고무시트 버터플라이밸브의 가속수명시험을 통한 수명특성 연구)

  • Lee, Gi-Chun;Lee, Young-Bum
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.29-35
    • /
    • 2013
  • Butterfly valve seated rubber has been widely used in water works and industrial fields because it has advantages which are small installation area and low weight. The size and material of butterfly valve have been selected by service environments and purposes. But there are out of the ordinary to find papers for the life characteristics of the butterfly valve. So, this study carries out the accelerated life test, which has an acceleration factor with pressure, using performance and life test equipment. Accelerated model is adopted with 3 stress level and the inverse power law model to estimate the life of the test samples. After the analysis of the test result, accelerated index has 7.0 and the acceleration factor has 208 which is applied with field condition with the pressure 6.3 bar.

No-Failure Accelerated Life Test of Flap Actuating System using Weibull Distribution (와이블 분포를 이용한 플랩구동장치의 무고장 가속수명시험)

  • Cho, Hyunjun;Lee, Inho;Kim, Sangbeom;Park, Sangjoon;Yang, Myungseok
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.51-58
    • /
    • 2016
  • In this paper, we present some results on No-failure accelerated life test of aerial vehicle for reliability demonstration. The design of general accelerated life test consists of the three phases: 1) Estimating normal life test time of a single product from Weibull distribution model; 2) Determining the acceleration factor (AF) by utilizing the relation between the life of mechanical components and the applied torque; 3) Calculating the accelerated life test time, which comes from dividing the estimated normal life test time into AF. Then, we applied the calculated life test time to the real reliability test of the flap actuating system, while considering the requirement specification for mechanical components and operating environment of the actuation system. Real experimental processes and results are presented to validate the theory.