• 제목/요약/키워드: Acc

검색결과 1,213건 처리시간 0.02초

Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs

  • Perumal, Ramadoss;Prabakaran, V.
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.479-488
    • /
    • 2020
  • The experimental and numerical works were carried out on high performance fiber reinforced concrete (HPFRC) with w/cm ratios ranging from 0.25 to 0.40, fiber volume fraction (Vf)=0-1.5% and 10% silica fume replacement. Improvements in compressive and flexural strengths obtained for HPFRC are moderate and significant, respectively, Empirical equations developed for the compressive strength and flexural strength of HPFRC as a function of fiber volume fraction. A relation between flexural strength and compressive strength of HPFRC with R=0.78 was developed. Due to the complex mix proportions and non-linear relationship between the mix proportions and properties, models with reliable predictive capabilities are not developed and also research on HPFRC was empirical. In this paper due to the inadequacy of present method, a back propagation-neural network (BP-NN) was employed to estimate the 28-day compressive strength of HPFRC mixes. BP-NN model was built to implement the highly non-linear relationship between the mix proportions and their properties. This paper describes the data sets collected, training of ANNs and comparison of the experimental results obtained for various mixtures. On statistical analyses of collected data, a multiple linear regression (MLR) model with R2=0.78 was developed for the prediction of compressive strength of HPFRC mixes, and average absolute error (AAE) obtained is 6.5%. On validation of the data sets by NNs, the error range was within 2% of the actual values. ANN model has given the significant degree of accuracy and reliability compared to the MLR model. ANN approach can be effectively used to estimate the 28-day compressive strength of fibrous concrete mixes and is practical.

Confinement effectiveness of Timoshenko and Euler Bernoulli theories on buckling of microfilaments

  • Taj, Muhammad;Khadimallah, Mohamed A.;Hussain, Muzamal;Mahmood, Shaid;Safeer, Muhammad;Al Naim, Abdullah F.;Ahmad, Manzoor
    • Advances in concrete construction
    • /
    • 제11권1호
    • /
    • pp.81-88
    • /
    • 2021
  • Rice Husk Ash (RHA) geopolymer paste activated by sodium aluminate were characterized by X-ray diffractogram (XRD), scanning electron microscope (SEM), energy dispersion X-Ray analysis (EDAX)and fourier transform infrared spectroscopy (FTIR). Five series of RHA geopolymer specimens were prepared by varying the Si/Al ratio as 1.5, 2.0, 2.5, 3.0 and 3.5. The paper focuses on the correlation of microstructure with hardened state parameters like bulk density, apparent porosity, sorptivity, water absorption and compressive strength. XRD analysis peaks indicates quartz, cristobalite and gibbsite for raw RHA and new peaks corresponding to Zeolite A in geopolymer specimens. In general, SEM micrographs show interconnected pores and loosely packed geopolymer matrix except for specimens made with Si/Al of 2.0 which exhibited comparatively better matrix. Incorporation of Al from sodium aluminate were confirmed with the stretching and bending vibration of Si-O-Si and O-Si-O observations from the FTIR analysis of geopolymer specimen. The dense microstructure of SA2.0 correlate into better performance in terms of 28 days maximum compressive strength of 16.96 MPa and minimum for porosity, absorption and sorptivity among the specimens. However, due to the higher water demand to make the paste workable, the value of porosity, absorption and sorptivity were reportedly higher as compared with other geopolymer systems. Correlation regression equations were proposed to validate the interrelation between physical parameters and mechanical strength. RHA geopolymer shows comparatively lower compressive strength as compared to Fly ash geopolymer.

Experimental study on shear, tensile, and compression behaviors of composite insulated concrete sandwich wall

  • Zhang, Xiaomeng;Zhang, Xueyong;Liu, Wenting;Li, Zheng;Zhang, Xiaowei;Zhou, Yilun
    • Advances in concrete construction
    • /
    • 제11권1호
    • /
    • pp.33-43
    • /
    • 2021
  • A new type of composite insulated concrete sandwich wall (ICS-wall), which is composed of a triangle truss steel wire network, an insulating layer, and internal and external concrete layers, is proposed. To study the mechanical properties of this new ICS-wall, tensile, compression, and shearing tests were performed on 22 specimens and tensile strength and corrosion resistance tests on 6 triangle truss joints. The variables in these tests mainly include the insulating plate material, the thickness of the insulating plate, the vertical distance of the triangle truss framework, the triangle truss layout, and the connecting mode between the triangle truss and wall and the material of the triangle truss. Moreover, the failure mode, mechanical properties, and bearing capacity of the wall under tensile, shearing, and compression conditions were analyzed. Research results demonstrate that the concrete and insulating layer of the ICS-wall are pulling out, which is the main failure mode under tensile conditions. The ICS-wall, which uses a graphite polystyrene plate as the insulating layer, shows better tensile properties than the wall with an ordinary polystyrene plate. The tensile strength and bearing capacity of the wall can be improved effectively by strengthening the triangle truss connection and shortening the vertical distances of the triangle truss. The compression capacity of the wall is mainly determined by the compression capacity of concrete, and the bonding strength between the wall and the insulating plate is the main influencing factor of the shearing capacity of the wall. According to the tensile strength and corrosion resistance tests of Austenitic stainless steel, the bearing capacity of the triangle truss does not decrease after corrosion, indicating good corrosion resistance.

Long-term monitoring of a hybrid SFRC slab on grade using recycled tyre steel fibres

  • Baricevic, Ana;Grubor, Martina;Paar, Rinaldo;Papastergiou, Panos;Pilakoutas, Kypros;Guadagnini, Maurizio
    • Advances in concrete construction
    • /
    • 제10권6호
    • /
    • pp.547-557
    • /
    • 2020
  • This paper presents one of the demonstration projects undertaken during the FP7 EU-funded Anagennisi project (Innovative reuse of all tyre components in concrete-2014-2017) on a full-scale (30 m×40 m, thickness: 0.2 m) Steel Fibre Reinforced Concrete (SFRC) slab-on-grade using a blend of manufactured steel fibres (MSF) and Recycled Tyre Steel Fibres (RTSF). The aim of the project was to assess the use of RTSF in everyday construction practice. The Anagennisi partners, Dulex Ltd in collaboration with Gradmont-Gradacac Ltd and University of Zagreb, designed, cast and monitored the long-term shrinkage deformations of the indoor slab-on-grade slab at Gradmont's precast concrete factory in Gradacac, Bosnia and Herzegovina. A hybrid RTSF mix (20 kg/㎥ of MSF+10 kg/㎥ of RTSF) was used to comply with the design criteria which included a maximum load capacity of 20 kN/㎡. The slab was monitored for one year using surveying equipment and visual inspection of cracks. During the monitoring period, the slab exhibited reasonable deformations (a maximum displacement of 3.3 mm for both, horizontal and vertical displacements) whilst after five years in use, the owners did not report any issues and were satisfied with the construction methodology and materials used. This work confirms that RSTF is a viable and sustainable solution for slab-on-grade applications.

Analysis of Failure and Electrical Fire for Bolt Induction Heating System Using FTA (FTA를 이용한 볼트 유도가열시스템의 고장 및 전기화재 분석)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Eom, Haneol;Kang, Moon-Soo;Jeong, Cheon-Kee
    • Journal of the Korean Society of Safety
    • /
    • 제36권4호
    • /
    • pp.12-19
    • /
    • 2021
  • This paper presents a safety assessment method for FTA-based induction heating systems; the failures and causes of electrical fire are first analyzed for each part and module qualitatively, and methods to manage high probabilities of failure and electrical fire are considered, thereby improving the reliability of the induction heating system. The cumulative importance value (ACC) of the minimal cut set is drawn by setting failure as the top event, and STACK and SMPS are observed to account for about 70% of the induction heating system failures. Thus, intensively managing the basic events contained in the minimal cut set of failures for STACK and SMPS is expected to provide effective and stable operation of the induction heating system. When electrical fire is set as the top event, the STACK percentage is 90%. Accordingly, the current IGBT is changed to a FET to increase the applied voltage and prevent induction heating system failure, and a heat sink plane is installed to prevent FET heating caused by switching, thereby preventing an electrical fire. By classifying the parts and modules of the induction heating system in detail and by applying FTA based on actual failure rates and relevant data, more practical and reasonable results may be expected. Hence, continuous research must be conducted to ensure safety when using induction heating systems.

Regulation of Hippo-YAP AXIS and CYP450 enzymes by herbal pharmaceuticals, Ojeok-san (Human Hippo-YAP AXIS 및 CYP450에 미치는 오적산의 영향)

  • Bae, Su Jin;Yun, Un-Jung;Bak, Seon-Been;Song, Yu-Rim;Kim, Choon-Ok;Kang, Hyung Won;Kim, Young Woo
    • Herbal Formula Science
    • /
    • 제30권1호
    • /
    • pp.1-9
    • /
    • 2022
  • Objectives : This study investigated the protective effect of Ojeok-san (OJS) on cellular damage induced by oxidative stress and whether it induces changes in CYP450 expression. Methods : To investigate the protective effect, we used cells stimulated by oxidative stress caused by the combination treatment of AA+iron. Changes in CYP450 expression were detected by immunoblotting analysis using Huh7 cells. Results : We observed that OJS altered the expression of CYP1A2, CYP3A4, CYP2C19, CYP2D6, and CYP2E1. OJS increased cell viability against AA+iron-induced oxidative stress and inhibited mitochondrial dysfunction. OJS increased phosphorylation of LKB1, phosphorylation of AMPK, and phosphorylation of ACC, which are related to the LKB1-AMPK pathway. In addition, phosphorylation of LATS1 and phosphorylation of YAP, which are related to the Hippo-YAP pathway, were increased. Conclusions : Our results show that OJS has 1) the ability to protect hepatocytes against oxidative stress, and 2) the potential to induce changes in CYP450.

3D FE modeling and parametric analysis of steel fiber reinforced concrete haunched beams

  • Al Jawahery, Mohammed S.;Cevik, Abdulkadir;Gulsan, Mehmet Eren
    • Advances in concrete construction
    • /
    • 제13권1호
    • /
    • pp.45-69
    • /
    • 2022
  • This paper investigates the shear behavior of reinforced concrete haunched beams (RCHBs) without stirrups. The research objective is to study the effectiveness of the ideal steel fiber (SF) ratio, which is used to resist shear strength, besides the influence of main steel reinforcement, compressive strength, and inclination angles of the haunched beam. The modeling and analysis were carried out by Finite Element Method (FE) based on a software package, called Atena-GiD 3D. The program of this study comprises two-part. One of them consists of nine results of experimental SF RCHBs which are used to identify the accuracy of FE models. The other part comprises 81 FE models, which are divided into three groups. Each group differed from another group by the area of main steel reinforcement (As) which are 226, 339, and 509 mm2. The other parameters which are considered in each group in the same quantities to study the effectiveness of them, were steel fiber volumetric ratios (0.0, 0.5, and 1.0)%, compressive strength (20.0, 40.0, 60.0) MPa, and the inclination angle of haunched beam (0.0°, 10.0°, and 15.0°). Moreover, the parametric analysis was carried out on SF RCHBs to clarify the effectiveness of each parameter on the mechanical behavior of SF RCHBs. The results show that the correlation coefficient (R2) between shear load capacities of FE proposed models and shear load capacities of experimental SF RCHBs is 0.9793, while the effective inclination angle of the haunched beam is 10° which contributes to resisting shear strength, besides the ideal ratio of steel fibers is 1% when the compressive strength of SF RCHBs is more than 20 MPa.

Reactivity of aluminosilicate materials and synthesis of geopolymer mortar under ambient and hot curing condition

  • Zafar, Idrees;Tahir, Muhammad Akram;Hameed, Rizwan;Rashid, Khuram;Ju, Minkwan
    • Advances in concrete construction
    • /
    • 제13권1호
    • /
    • pp.71-81
    • /
    • 2022
  • Aluminosilicate materials as precursors are heterogenous in nature, consisting of inert and partially reactive portion, and have varying proportions depending upon source materials. It is essential to assess the reactivity of precursor prior to synthesize geopolymers. Moreover, reactivity may act as decisive factor for setting molar concentration of NaOH, curing temperature and setting proportion of different precursors. In this experimental work, the reactivities of two precursors, low calcium (fly ash (FA)) and high calcium (ground granulated blast furnace slag (GGBS)), were assessed through the dissolution of aluminosilicate at (i) three molar concentrations (8, 12, and 16 M) of NaOH solution, (ii) 6 to 24 h dissolution time, and (iii) 20-100℃. Based on paratermeters influencing the reactivity, different proportions of ternary binders (two precursors and ordinary cement) were activated by the combined NaOH and Na2SiO3 solutions with two alkaline activators to precursor ratios, to synthesize the geopolymer. Reactivity results revealed that GGBS was 20-30% more reactive than FA at 20℃, at all three molar concentrations, but its reactivity decreased by 32-46% with increasing temperature due to the high calcium content. Setting time of geopolymer paste was reduced by adding GGBS due to its fast reactivity. Both GGBS and cement promoted the formation of all types of gels (i.e., C-S-H, C-A-S-H, and N-A-S-H). As a result, it was found that a specified mixing proportion could be used to improve the compressive strength over 30 MPa at both the ambient and hot curing conditions.

The comparison between NBD test results and SCB test results using experimental test and numerical simulation

  • Fu, Jinwei;Sarfarazi, Vahab;Haeri, Hadi;Naderi, K.;Fatehi Marji, Mohammad;Guo, Mengdi
    • Advances in concrete construction
    • /
    • 제13권1호
    • /
    • pp.83-99
    • /
    • 2022
  • The two, NBD and SCB tests using gypsum circular discs each containing a single notch have been experimentally accomplished in a rock mechanics laboratory. These specimens have also been numerically modelled by a two-dimensional particle flow which is based on Discrete Element Method (DEM). Each testing specimen had a thickness of 5 cm with 10 cm in diameter. The specimens' lengths varied as 2, 3, and 4 cm; and the specimens' notch angles varied as 0°, 45° and 90°. Similar semi-circular gypsum specimens were also prepared each contained one edge notch with angles 0° or 45°. The uniaxial testing machine was used to perform the experimental tests for both NBD and SCB gypsum specimens. At the same time, the numerical simulation of these tests were performed by PFC2D. The experimental results showed that the failure mechanism of rocks is mainly affected by the orientations of joints with respect to the loading directions. The failure mechanism and fracturing patterns of the gypsum specimens are directly related to the final failure loading. It has been shown that the number of induced tensile cracks showing the specimens' tensile behavior, and increases by decreasing the length and angle of joints. It should be noted that the fracture toughness of rocks' specimens obtained by NBD tests was higher than that of the SCB tests. The fracture toughness of rocks usually increases with the increasing of joints' angles but increasing the joints' lengths do not change the fracture toughness. The numerical solutions and the experimental results for both NDB and SCB tests give nearly similar fracture patterns during the loading process.

An experimental and analytical study into the strength of hooked-end steel fiber reinforced HVFA concrete

  • Shariq, M.;Pal, S.;Chaubey, R.;Masood, A.
    • Advances in concrete construction
    • /
    • 제13권1호
    • /
    • pp.35-43
    • /
    • 2022
  • The experimental investigations into hooked-end round steel fibers (HSF) effect on the age-dependent strengths of high volume fly ash (HVFA) concrete is studied. The concrete was prepared with class F fly ash used as partial cement replacement varied from 0% to 70% on an equal weight basis. Two percentages of HSF (i.e., 0.5% and 1.5% by volume fraction) of 50 mm length were added in plain, and 50% fly ash concrete mixes. The compressive and flexural tensile strength was determined at 7, 28, 56, and 90 days. The strength results of fly ash concrete mixes with and without steel fibers were compared with the plain concrete strength. The test results indicated that the strength of fly ash concrete is comparable with the plain concrete strength and further increases with an increase in the percentage of steel fibers. The maximum flexure strength of HVFA concrete is found with 0.5% steel fibers. It is concluded that the HVFA concrete with steel fibers of 50 mm length can effectively be used in concrete construction. The analytical models are proposed to predict the age-dependent compressive and flexural tensile strength of HVFA concrete with and without HSF. The compressive and tensile strength of HVFA concrete with HSF can be predicted using these models when the 28-day compressive strength of plain concrete is known. The present study will be helpful in the design and construction of reinforced and pre-stressed concrete structures made with HVFA and HSF.