• Title/Summary/Keyword: Acausal simulation

Search Result 3, Processing Time 0.045 seconds

Integrated Flight Simulation Program for Multicopter Drones by Using Acausal and Object-Oriented Language Modelica (비인과, 객체지향적 언어 모델리카를 이용한 멀티콥터형 드론의 통합 비행 시뮬레이션 프로그램)

  • Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.437-446
    • /
    • 2017
  • An integrated flight simulation program for multicopter drones is presented. The program includes rigid body dynamics, propeller thrust, battery energy, control, and air. Using this program, users can monitor and analyze the states of drones along flight trajectories. As a programming language, Modelica has been chosen, that specializes in simulation program development. Modelica enables users to develop simulation programs efficiently due to acausal and object oriented properties. For missions including horizontal and vertical maneuvers, many dynamical states of drones have been analyzed with simulation results.

Development of Integrated Simulation Program for Artificial Satellite Operations by Modelica (Modelica를 이용한 인공위성 동작 통합시뮬레이션 프로그램 개발)

  • Jin, Jaehyun;Park, Bong-Kyu
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.3
    • /
    • pp.39-46
    • /
    • 2015
  • An integrated simulation program for an artificial satellite's operation has been developed. The program integrates and simulates orbit mechanics, attitude control, power/energy transition and mass variation. In the early stages of satellite development, this program can be used as a communication tool among design engineers of different fields. As a result, the efficiency to design a satellite is expected to increase. This program has been coded by Modelica language which supports acausal and object oriented programming methods. Libraries are developed for satellite simulation, and simulation results are presented.

Vibration Analysis and Parameter Design of Two Degree of Freedom System Using Modelica (모델리카를 이용한 2자유도 시스템 진동해석 및 파라미터 설계)

  • Yoo, Yeongmin;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.791-797
    • /
    • 2017
  • Today, we are using computer simulations in various engineering disciplines to reduce the time and cost of product development. The scope of simulations is increasingly complex and diverse for different fields such as mechanical, electrical, thermal, and fluid. Thus, it is necessary to use integrated simulations. In order to overcome these problems, a language has been developed to effectively describe and implement simulations is Modelica. To model and simulate a system, physical models can be broadly divided into causal and acausal models. The most important feature of Modelica is acausal programming. In this study, we will introduce simple concepts and explain about the usage of Modelica. Furthermore, we will explain the vibration analysis of a two degree-of-freedom system and the design of appropriate parameters by using Modelica.