• Title/Summary/Keyword: Academic Department Classification

Search Result 113, Processing Time 0.023 seconds

Present Status and Prospect of Valuation for Tangible Fixed Asset in South Korea (유형고정자산 가치평가 현황: 우리나라 사례를 중심으로)

  • Jin-Hyung Cho;Hyun-Seung O;Sae-Jae Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.91-104
    • /
    • 2023
  • The records system is believed to have started in Italy in the 14th century in line with trade developments in Europe. In 1491, Luca Pacioli, a mathematician, and an Italian Franciscan monk wrote the first book that described double-entry accounting processes. In many countries, including Korea, the government accounting standards used single-entry bookkeeping rather than double-entry bookkeeping that can be aggregated by account subject. The cash-based and single-entry bookkeeping used by the government in the past had limitations in providing clear information on financial status and establishing a performance-oriented financial management system. Accordingly, the National Accounting Act (promulgated in October 2007) stipulated the introduction of double-entry bookkeeping and accrual accounting systems in the government sector from January 1, 2009. Furthermore, the Korean government has also introduced International Financial Reporting Standards (IFRS), and the System of National Accounts (SNA). Since 2014, Korea owned five national accounts. In Korea, valuation began with the 1968 National Wealth Statistics Survey. The academic origins of the valuation of national wealth statistics which had been investigated by due diligence every 10 years since 1968 are based on the 'Engineering Valuation' of professor Marston in the Department of Industrial Engineering at Iowa State University in the 1930s. This field has spread to economics, etc. In economics, it became the basis of capital stock estimation for positive economics such as econometrics. The valuation by the National Wealth Statistics Survey contributed greatly to converting the book value of accounting data into vintage data. And in 2000 National Statistical Office collected actual disposal data for the 1-digit asset class and obtained the ASL(average service life) by Iowa curve. Then, with the data on fixed capital formation centered on the National B/S Team of the Bank of Korea, the national wealth statistics were prepared by the Permanent Inventory Method(PIM). The asset classification was also classified into 59 types, including 2 types of residential buildings, 4 types of non-residential buildings, 14 types of structures, 9 types of transportation equipment, 28 types of machinery, and 2 types of intangible fixed assets. Tables of useful lives of tangible fixed assets published by the Korea Appraisal Board in 1999 and 2013 were made by the Iowa curve method. In Korea, the Iowa curve method has been adopted as a method of ASL estimation. There are three types of the Iowa curve method. The retirement rate method of the three types is the best because it is based on the collection and compilation of the data of all properties in service during a period of recent years, both properties retired and that are still in service. We hope the retirement rate method instead of the individual unit method is used in the estimation of ASL. Recently Korean government's accounting system has been developed. When revenue expenditure and capital expenditure were mixed in the past single-entry bookkeeping we would like to suggest that BOK and National Statistical Office have accumulated knowledge of a rational difference between revenue expenditure and capital expenditure. In particular, it is important when it is estimated capital stock by PIM. Korea also needs an empirical study on economic depreciation like Hulten & Wykoff Catalog A of the US BEA.

Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification (전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Fang, Yang;Ko, Seunghyun;Jo, Geun Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet) is one class of the powerful Deep Neural Network that can analyze and learn hierarchies of visual features. Originally, first neural network (Neocognitron) was introduced in the 80s. At that time, the neural network was not broadly used in both industry and academic field by cause of large-scale dataset shortage and low computational power. However, after a few decades later in 2012, Krizhevsky made a breakthrough on ILSVRC-12 visual recognition competition using Convolutional Neural Network. That breakthrough revived people interest in the neural network. The success of Convolutional Neural Network is achieved with two main factors. First of them is the emergence of advanced hardware (GPUs) for sufficient parallel computation. Second is the availability of large-scale datasets such as ImageNet (ILSVRC) dataset for training. Unfortunately, many new domains are bottlenecked by these factors. For most domains, it is difficult and requires lots of effort to gather large-scale dataset to train a ConvNet. Moreover, even if we have a large-scale dataset, training ConvNet from scratch is required expensive resource and time-consuming. These two obstacles can be solved by using transfer learning. Transfer learning is a method for transferring the knowledge from a source domain to new domain. There are two major Transfer learning cases. First one is ConvNet as fixed feature extractor, and the second one is Fine-tune the ConvNet on a new dataset. In the first case, using pre-trained ConvNet (such as on ImageNet) to compute feed-forward activations of the image into the ConvNet and extract activation features from specific layers. In the second case, replacing and retraining the ConvNet classifier on the new dataset, then fine-tune the weights of the pre-trained network with the backpropagation. In this paper, we focus on using multiple ConvNet layers as a fixed feature extractor only. However, applying features with high dimensional complexity that is directly extracted from multiple ConvNet layers is still a challenging problem. We observe that features extracted from multiple ConvNet layers address the different characteristics of the image which means better representation could be obtained by finding the optimal combination of multiple ConvNet layers. Based on that observation, we propose to employ multiple ConvNet layer representations for transfer learning instead of a single ConvNet layer representation. Overall, our primary pipeline has three steps. Firstly, images from target task are given as input to ConvNet, then that image will be feed-forwarded into pre-trained AlexNet, and the activation features from three fully connected convolutional layers are extracted. Secondly, activation features of three ConvNet layers are concatenated to obtain multiple ConvNet layers representation because it will gain more information about an image. When three fully connected layer features concatenated, the occurring image representation would have 9192 (4096+4096+1000) dimension features. However, features extracted from multiple ConvNet layers are redundant and noisy since they are extracted from the same ConvNet. Thus, a third step, we will use Principal Component Analysis (PCA) to select salient features before the training phase. When salient features are obtained, the classifier can classify image more accurately, and the performance of transfer learning can be improved. To evaluate proposed method, experiments are conducted in three standard datasets (Caltech-256, VOC07, and SUN397) to compare multiple ConvNet layer representations against single ConvNet layer representation by using PCA for feature selection and dimension reduction. Our experiments demonstrated the importance of feature selection for multiple ConvNet layer representation. Moreover, our proposed approach achieved 75.6% accuracy compared to 73.9% accuracy achieved by FC7 layer on the Caltech-256 dataset, 73.1% accuracy compared to 69.2% accuracy achieved by FC8 layer on the VOC07 dataset, 52.2% accuracy compared to 48.7% accuracy achieved by FC7 layer on the SUN397 dataset. We also showed that our proposed approach achieved superior performance, 2.8%, 2.1% and 3.1% accuracy improvement on Caltech-256, VOC07, and SUN397 dataset respectively compare to existing work.

An Investigation of Local Naming Issue of Tamarix aphylla (에셀나무(Tamarix aphylla)의 명칭문제에 대한 고찰)

  • Kim, Young-Sook
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.37 no.1
    • /
    • pp.56-67
    • /
    • 2019
  • In order to investigate the issue with the proper name of eshel(Tamarix aphylla) mentioned in the Bible, analysis of morphological taxonomy features of plants, studies on the symbolism of the Tamarix genus, analysis of examples in Korean classics and Chinese classics, and studies on the problems found in translations of Korean, Chinese and Japanese Bibles. The results are as follows. According to plant taxonomy, similar species of the Tamarix genus are differentiated by the leaf and flower, and because the size is very small about 2-4mm, it is difficult to differentiate by the naked eye. However, T. aphylla found in the plains of Israel and T. chinensis of China and Korea have distinctive differences in terms of the shape of the branch that droops and its blooming period. The Tamarix genus is a very precious tree that was planted in royal courtyards of ancient Mesopotamia and the Han(漢) Dynasty of China, and in ancient Egypt, it was said to be a tree that gave life to the dead. In the Bible, it was used as a sign of the covenant that God was with Abraham, and it also symbolized the prophet Samuel and the court of Samuel. When examining the example in Korean classics, the Tamarix genus was used as a common term in the Joseon Dynasty and it was often used as the medical term '$Ch{\bar{e}}ngli{\check{u}}$(檉柳)'. Meanwhile, the term 'wiseonglyu(渭城柳)' was used as a literary term. Upon researching the period and name of literature related to $Ch{\bar{e}}ngli{\check{u}}$(檉柳) among Chinese medicinal herb books, a total of 16 terms were used and among these terms, the term Chuísīliǔ(垂絲柳) used in the Chinese Bible cannot be found. There was no word called 'wiseonglyu(渭城柳)' that originated from the poem by Wang Wei(699-759) of Tang(唐) Dynasty and in fact, the word 'halyu(河柳)' that was related to Zhou(周) China. But when investigating the academic terms of China currently used, the words Chuísīliǔ(垂絲柳) and $Ch{\bar{e}}ngli{\check{u}}$(檉柳) are used equally, and therefore, it appears that the translation of eshel in the Chinese Bible as either Chuísīliǔ (垂絲柳) or $Ch{\bar{e}}ngli{\check{u}}$(檉柳) both appear to be of no issue. There were errors translating tamarix into 'やなぎ(willow)' in the Meiji Testaments(舊新約全書 1887), and translated correctly 'ぎょりゅう(檉柳)' since the Colloquial Japanese Bible(口語譯 聖書 1955). However, there are claims that 'gyoryu(ぎょりゅう 檉柳)' is not an indigenous species but an exotics species in the Edo Period, so it is necessary to reconsider the terminology. As apparent in the Korean classics examples analysis, there is high possibility that Korea's T. chinensis were grown in the Korean Peninsula for medicinal and gardening purposes. Therefore, the use of the medicinal term $Ch{\bar{e}}ngli{\check{u}}$(檉柳) or literary term 'wiseonglyu' in the Korean Bible may not be a big issue. However, the term 'wiseonglyu' is used very rarely even in China and as this may be connected to the admiration of China and Chinese things by literary persons of the Joseon Dynasty, so the use of this term should be reviewed carefully. Therefore, rather than using terms that may be of issue in the Bible, it is more feasible to transliterate the Hebrew word and call it eshel.