• 제목/요약/키워드: Ac Impedance

Search Result 439, Processing Time 0.021 seconds

A Study on Distance Relay of Transmission UPFC Using Artificial Neural Network (신경회로망을 이용한 UPFC가 연계된 송전선로의 거리계전기에 관한 연구)

  • Lee, Jun-Kyong;Park, Jeong-Ho;Lee, Seung-Hyuk;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.37-44
    • /
    • 2004
  • This paper represents a new approach for the protective relay of power transmission lines using a Artificial Neural Network(ANN). A different fault m transmission lines need to be detected classified and located accurately and cleared as fast as possible. However, The protection range of the distance relay is always designed on the basis of fixed settings, and unfortunately these approach do not have the ability to adapt dynamically to the system operating condition. ANN is suitable for the adaptive relaying and the detection of complex faults. The backpropagation algerian based multi-layer protection is utilized for the teaming process. It allows to make control to various protection functions. As expected, the simulation result demonstrate that this approach is useful and satisfactory.

Properties of Synthesis (BaSr)$(CoFe)O_3$ Cathode for IT-SOFC by GNP (GNP 법을 이용한 저온형 SOFC용 (BaSr)$(CoFe)O_3$ 공기극의 제조 및 특성 평가)

  • Lee, Mi-Jai;Moon, Ji-Woong;Kim, Sei-Ki;Ji, Mi-Jung;Hwang, Hae-Jin;Lim, Yong-Ho;Choi, Byung-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.51-54
    • /
    • 2006
  • Cathode material, $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$, for low temperature SOFC was prepared by the glycine-nitrate synthesis process (GNP). The characteristics of the synthesized powders were studied with controlling pH of a precursor. The synthesis BSCF powders with pH were agglomeration state and calcinations temperature has not influence on particles. Highly acidicprecursor solution increased a single phase forming the temperature. Also, synthesis BSCF powder was show result for thermal analysis and alteration of difference crystal with pH. It is considered that Ba and Sr cannot complex by carboxylic acid group of glycine, because under highly acidic condition the caboxylic group mainly combined with $H^+$ insead of alkali and alkaline earth cations. In case of using precursor solution with pH $2{\sim}3$, a single perovskite phase was obtained at $1000^{\circ}C$. Polarization resistance of $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ was measured by AC impedance spectroscopy from the two electrode symmetric cell. Area specific resistance of the $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ air electrode at $500^{\circ}C\;and\;600^{\circ}C$ were $0.96{\Omega}?cm^2$ and $0.16{\Omega}?cm^2$, respectively.

  • PDF

Active Reaction Sites and Oxygen Reduction Kinetics on $La_1_{-x}Sr_xMnO_{3+\delta}$(x=0.1-0.4)/YSZ (Yttria-Stabilized Zirconia) Electrodes for Solid Oxide Fuel Cells

  • Lee, Hee Y.;Cho, Woo S.;오승모
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.661-666
    • /
    • 1998
  • Active reaction sites and electrochemical O2 reduction kinetics on La_{1-x}Sr_xMnO_{3+{\delta}} (x=0.1-0.4)/YSZ (yttria-stabilized zirconia) electrodes are investigated in the temperature range of 700-900 ℃ at $Po_2=10^{-3}$-0.21 atm. Results of the steady-state polarization measurements, which are formulated into the Butler-Volmer formalism to extract transfer coefficient values, lead us to conclude that the two-electron charge transfer step to atomically adsorbed oxygen is rate-limiting. The same conclusion is drawn from the $Po_2$-dependent ac impedance measurements, where the exponent m in the relationship of $I_o$ (exchange current density) ∝ $P_{o_{2}}^m$ is analyzed. Chemical analysis is performed on the quenched Mn perovskites to estimate their oxygen stoichiometry factors (δ) at the operating temperature (700-900 ℃). Here, the observed δ turns out to become smaller as both the Sr-doping contents (x) and the measured temperature increase. A comparison between the 8 values and cathodic activity of Mn perovskites reveals that the cathodic transfer coefficients $({\alpha}_c)$ for oxygen reduction reaction are inversely proportional to δ whereas the anodic ones $({\alpha}_a)$ show the opposite trend, reflecting that the surface oxygen vacancies on Mn perovskites actively participate in the $O_2$ reduction reaction. Among the samples of x= 0.1-0.4, the manganite with x=0.4 exhibits the smallest 8 value (even negative), and consistently this electrode shows the highest ${\alpha}_c$ and the best cathodic activity for the oxygen reduction reaction.

A Facile Process for Surface Modification with Lithium Ion Conducting Material of Li2TiF6 for LiMn2O4 in Lithium Ion Batteries

  • Kim, Min-Kun;Kim, Jin;Yu, Seung-Ho;Mun, Junyoung;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.223-230
    • /
    • 2019
  • A facile method for surface coating with $Li_2TiF_6$ which has a high lithium-ion conductivity, on $LiMn_2O_4$ spinel cathode material for high performance lithium ion batteries. The surface coating is performed by using a co-precipitation method with $Li_2CO_3$ powder and $H_2TiF_6$ solution under room temperature and atmospheric pressure without special equipment. Total coating amount of $Li_2TiF_6$ is carefully controlled from 0 to 10 wt.% based on the active material of $LiMn_2O_4$. They are evaluated by a systematic combination of analyses comprising with XRD, SEM, TEM and ICP. It is found that the surface modification of $Li_2TiF_6$ is very beneficial to high cycle life and excellent rate capability by reducing surface failure and supporting lithium ions transportation on the surface. The best coating condition is found to have a high cycle life of $103mAh\;g^{-1}$ at the 100th cycle and a rate capability of $102.9mAh\;g^{-1}$ under 20 C. The detail electrochemical behaviors are investigated by AC impedance and galvanostatic charge and discharge test.

Electrochemical Characteristics of Anode-supported Solid Oxide Fuel Cells (연료극 지지형 고체산화물 연료전지의 전기화학적 특성)

  • Yoon Sung Pil;Han Jonghee;Nam Suk Woo;Lim Tae-Hoon;Hong Seong-Ahn;Hyun Sang-Hoon;Yoo Young-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2001
  • YSZ ($8mol\%$ yttria-stabilized zirconia)-modified LSM $(La_{0.85}Sr_{0.15}MnO_3)$ composite cathodes were fabricated by formation of YSZ film on triple phase boundary (TPB) of LSM/YSZ/gas. The YSZ coating film greatly enlarged electrochemical reaction sites from the increase of additional TPB. The composite cathode was formed on thin YSZ electrolyte (about 30 Um thickness) supported on an anode and then I-V characterization and AC impedance analyses were performed at temperature between $700^{\circ}C\;and\;800^{\circ}C$. As results of the impedance analysis on the cell at $800^{\circ}C$ with humidified hydrogen as the fuel and air as the oxidant, R1 around the frequency of 1000 Hz represents the anode Polarization. R2 around the frequency of 100Hz indicates the cathode polarization, and R3 below the frequency of 10 Hz is the resistance of gas phase diffusion through the anode. The cell with the composite cathode produced power density of $0.55\;W/cm^2\;and\;1W/cm^2$ at air and oxygen atmosphere, respectively. The I-V curve could be divided into two parts showing distinctive behavior. At low current density region (part I) the performance decreased steeply and at high current density region (part II) the performance decreased gradually. At the part I the performance decrease was especially resulted from the large cathode polarization, while at the part H the performance decrease related to the electrolyte polarization.

Studies on LiF-${Li_2}O-{B_2}{O_3}-{P_2}{O_5}$ based Glassy Solid Electrolytes (LiF-${Li_2}O-{B_2}{O_3}-{P_2}{O_5}$계 유리고체전해질에 관한 연구)

  • Park, Gang-Seok;Gang, Eun-Tae;Kim, Gi-Won;Han, Sang-Mok
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.614-623
    • /
    • 1993
  • Electrical characteristics of LiF-$Li_{2}O-B_{2}O_{3}-P_{2}O_5$ glasses with fixed $Li_2O$ content have been investigated by using AC impedance spectroscopy. Part of the total lithium ions present in these glasses contributes to conduction, and the changes in electrical conductivity with composition was inconsistent with the weak electrolyte model. The power law could not be used to determine the hopping ion concentration in these glasses. Both mobile carrier density and mobility have been modified as Li were added in the form of LiF. The formation of $(B-O-P)^-,di^-$, and metaborate group gave additional available sites for Li+ diffusion causing the enhancement of conductivity. The observed maximum conductivity was $2.43 \times 10^{-4}$S/cm at $150^{\circ}C$ at the composition containing 8mol% LiF. The decomposion potential amounted to 5.94V. The Li/glass electrolyte/$TiS_2$ solid-state cell showed open circuit voltage of 3.14V and energy density of 22 Wh/Kg at $150^{\circ}C$.

  • PDF

EIS monitoring on corroded reinforcing steel in cement mortar after calcium electro-deposition treatment (칼슘 전착처리 후, 시멘트 모르타르 속 철근의 부식속도에 대한 EIS 모니터링)

  • Kim, Je-Kyoung;Kee, Seong-Hoon;Yee, Jurng-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2019
  • The primary purposes of this study are to understand a fundamental effects of electro-deposition on reinforcing steel in saturated Ca(OH)2 electrolyte, and evaluate the corrosion rates of rebars under cyclic 3wt.%NaCl immersion and dry corrosion environment. The three cement mortar specimens with cover thickness 5, 10 and 30mm, were prepared in the experiment. To monitor the corrosion rates of rebars in mortar, the three cement mortar specimens were exposed to 110 wet-drying cycles(8-hour-immersion in 3wt.%NaCl and 16-hour-drying in a room temperature) in the laboratory. During the wet-dry cycles, the polarization resistance, Rp, and solution resistance, Rs, were continuously measured. The instantaneous corrosion rates of rebars on the effect of electro-depositing with sat. Ca(OH)2 electrolyte were estimated from obtained R-1p and degrees of wetness were estimated from Rs values. From the experimental results, the corrosion rates of rebars were greatly accelerated by wet/dry cycles. During the mortars exposed to drying condition, the large increases in the corrosion rates were showed at all rebar surfaces in three mortar specimen, attributed from the accelerated reduction rates of dissolved oxygen in drying process. However, the corrosion rates on rebar surface electrochemically deposited with sat. Ca(OH)2 electrolyte showed the clear decreases, caused by calcium deposits in the porous rust layer.

An Analysis on the Over-Potentially Deposited Hydrogen at the Polycrystalline $Ir/H_2SO_4$ Aqueous Electrolyte Interface Using the Phase-Shift Method (위상이동 방법에 의한 다결정 $Ir/H_2SO_4$ 수성 전해질 계면에서 과전위 수소흡착에 관한 해석)

  • Chun Jagn Ho;Mun Kyeong Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.109-114
    • /
    • 2000
  • The relation between the phase-shift profile fur the intermediate frequencies and the Langmuir adsorption isotherm at the poly-Ir/0.1 M $H_2SO_4$ aqueous electrolyte interface has been studied using ac impedance measurements, i.e., the phase-shift methods. The simplified interfacial equivalent circuit consists of the serial connection of the electrolyte resistance $(R_s)$, the faradaic resistance $(R_F)$, and the equivalent circuit element $(C_P)$ of the adsorption pseudoca-pacitance $(C_\phi)$. The comparison of the change rates of the $\Delta(-\phi)/{\Delta}E\;and\;\Delta{\theta}/{\Delta}E$ are represented. The delayed phase shift $(\phi)$ depends on both the cathode potential (E) and frequency (f), and is given by $\phi=tan^{-1}[1/2{\pi}f(R_s+R_F)C_P]$. The phase-shift profile $(-\phi\;vs.\;E)$ for the intermediate frequency (ca. 1 Hz) can be used as an experimental method to determine the Langmuir adsorption isotherm $(\theta\;vs.\;E)$. The equilibrium constant (K) for H adsorption and the standard free energy $({\Delta}G_{ads})$ of H adsorption at the poly-Ir/0.1 M $H_2SO_4$ electrolyte interface are $2.0\times10^{-4}$ and 21.1kJ/mol, respectively. The H adsorption is attributed to the over-potentially deposited hydrogen (OPD H).

Power Generating Characteristics of Anode-Supported SOFC fabricated by Uni-Axial Pressing and Screen Printing (일축가압/스크린인쇄 공정에 의해 제조된 음극지지형 SOFC의 출력특성)

  • 정화영;노태욱;김주선;이해원;고행진;이기춘;이종호
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.456-463
    • /
    • 2004
  • To enhance the performance of anode-supported SOFC, single cell fabrication procedure was changed for better and resulting power generating characteristics of single cell were investigated. Liquid condensation process was employed for the granulation of NiO/YSZ powder mixture and the produced powder granules were compacted into anode green substrate by uni-axial pressing. YSZ electrolyte was printed on green substrate via screen-printing method and co-fired at 1400$^{\circ}C$ for 3 h. LSM/YSZ composite cathode of which the composition and heat treatment condition was adjusted to minimize the polarization#resistance with AC-impedance spectroscopy, was screen printed. The final single cell size from this multi-step procedure was 5${\times}$5 $\textrm{cm}^2$ and 10${\times}$10 $\textrm{cm}^2$. The maximum power densities of 5${\times}$5 and 10${\times}$10 single cells were about 0.45 W/$\textrm{cm}^2$ and 0.22 W/$\textrm{cm}^2$ at 800$^{\circ}C$, which are two times superior than those from single cells fabricated by the conventional process in previous our work.

The Relation between the Phase-Shift Profile for the Intermediate Frequencies and the Langmuir Adsorption Isotherm (중간주파수에서 위상이동 변화와 Langmuir흡착등온식 사이의 관계)

  • Chun Jang Ho;Mun Kyeong Hyeon;Cho Chong Dug
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • The relation between the phase-shift profile for the intermediate frequencies and the Langmuir adsorption isotherm at the poly-$Pt/0.1\;M\;H_2SO_4$ aqueous electrolyte interface has been studied using ac impedance measurements, i.e., the phase-shift methods. The suggested interfacial equivalent circuit consists of the serial connection of the electrolyte resistance ($R_S$), the faradaic resistance $(R_F)$ and the equivalent circuit element $(C_P)$ of the adsorption pseudocapacitance $(C_\varphi)$. The delayed phase shift $(\varphi)$ depends on both the cathode potential (E) and frequency (f), and is given by $\varphi=-tan^{-1}[1/2{\pi}f(R_s+R_F)C_p]$. The phase-shift profile $(\varphi\;vs.\;E)$ for the intermediate frequency (ca. 6Hz) can be used as an experimental method to determine the Langmuir adsorption isotherm (9 vs. E). The equilibrium constant (K) for H adsorption and the standard free energy $({\Delta}G_{ads})$ of H adsorption at the poly-$Pt/0.1\;M\;H_2SO_4$ electrolyte interface are $1.8\times10^{-4}\;and\;21.4kJ/mol$, respectively. The H adsorption is attributed to the over-potentially deposited hydrogen (OPD H).