• 제목/요약/키워드: Abusive Detection

검색결과 4건 처리시간 0.016초

양방향 장단기 메모리 신경망을 이용한 욕설 검출 (Abusive Detection Using Bidirectional Long Short-Term Memory Networks)

  • 나인섭;이신우;이재학;고진광
    • 한국빅데이터학회지
    • /
    • 제4권2호
    • /
    • pp.35-45
    • /
    • 2019
  • 욕설과 비속어를 포함한 악성 댓글에 대한 피해는 최근 언론에 나오는 연애인의 자살뿐만 아니라 사회 전반에서 다양한 형태로 증가하고 있다. 이 논문에서는 양방향 장단기 메모리 신경망 모델을 이용하여 욕설을 검출하는 기법을 제시하였다. 웹 크룰러를 통해 웹상의 댓글을 수집하고, 영어나 특수문자 등의 사용하지 않은 글에 대해 불용어 처리를 하였다. 불용어 처리된 댓글에 대해 문장의 전·후 관계를 고려한 양방향 장단기 메모리 신경망 모델을 적용하여 욕설 여부를 판단하고 검출하였다. 양방향 장단기 메모리 신경망을 사용하기 위해 검출된 댓글에 대해 형태소 분석과 벡터화 과정을 거쳤으며 각 단어들에 욕설 해당 여부를 라벨링하여 진행하였다. 실험 결과 정제하고 수집된 총 9,288개의 댓글에 대해 88.79%의 성능을 나타내었다.

  • PDF

Profane or Not: Improving Korean Profane Detection using Deep Learning

  • Woo, Jiyoung;Park, Sung Hee;Kim, Huy Kang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.305-318
    • /
    • 2022
  • Abusive behaviors have become a common issue in many online social media platforms. Profanity is common form of abusive behavior in online. Social media platforms operate the filtering system using popular profanity words lists, but this method has drawbacks that it can be bypassed using an altered form and it can detect normal sentences as profanity. Especially in Korean language, the syllable is composed of graphemes and words are composed of multiple syllables, it can be decomposed into graphemes without impairing the transmission of meaning, and the form of a profane word can be seen as a different meaning in a sentence. This work focuses on the problem of filtering system mis-detecting normal phrases with profane phrases. For that, we proposed the deep learning-based framework including grapheme and syllable separation-based word embedding and appropriate CNN structure. The proposed model was evaluated on the chatting contents from the one of the famous online games in South Korea and generated 90.4% accuracy.

딥러닝를 사용한 온라인 게임에서의 욕설 탐지 (Abusive Sentence Detection using Deep Learning in Online Game)

  • 박성희;김휘강;우지영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.13-14
    • /
    • 2019
  • 욕설은 게임 내 가장 큰 불쾌 요소 중 하나이다. 지금까지 게임 사용자들의 욕설을 방지하기 위해서 금칙어를 기반으로 필터링 해왔으나, 한국어 특성상 단어를 변형하거나 중간에 숫자를 넣는 등 우회할 방법이 다양하기 때문에 효과적이지 않다. 따라서 본 논문에서는 실제 온라인 게임 'Archeage'에서 수집된 채팅 데이터를 기반으로 딥러닝 기법 중 하나인 콘볼루션 신경망을 사용하여 욕설을 탐지하는 모델을 구축하였다. 한글의 자음, 모음을 분리하여 실험하였을 때, 87%라는 정확도를 얻었다. 한 글자씩 분리한 경우, 조금 더 좋은 정확도를 얻었으나, 사전의 수가 자소를 분리한 경우보다 10배 이상 늘어난 것을 고려해보면 자소를 분리한 것이 더 효율적이다.

  • PDF

Hate Speech Detection Using Modified Principal Component Analysis and Enhanced Convolution Neural Network on Twitter Dataset

  • Majed, Alowaidi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.112-119
    • /
    • 2023
  • Traditionally used for networking computers and communications, the Internet has been evolving from the beginning. Internet is the backbone for many things on the web including social media. The concept of social networking which started in the early 1990s has also been growing with the internet. Social Networking Sites (SNSs) sprung and stayed back to an important element of internet usage mainly due to the services or provisions they allow on the web. Twitter and Facebook have become the primary means by which most individuals keep in touch with others and carry on substantive conversations. These sites allow the posting of photos, videos and support audio and video storage on the sites which can be shared amongst users. Although an attractive option, these provisions have also culminated in issues for these sites like posting offensive material. Though not always, users of SNSs have their share in promoting hate by their words or speeches which is difficult to be curtailed after being uploaded in the media. Hence, this article outlines a process for extracting user reviews from the Twitter corpus in order to identify instances of hate speech. Through the use of MPCA (Modified Principal Component Analysis) and ECNN, we are able to identify instances of hate speech in the text (Enhanced Convolutional Neural Network). With the use of NLP, a fully autonomous system for assessing syntax and meaning can be established (NLP). There is a strong emphasis on pre-processing, feature extraction, and classification. Cleansing the text by removing extra spaces, punctuation, and stop words is what normalization is all about. In the process of extracting features, these features that have already been processed are used. During the feature extraction process, the MPCA algorithm is used. It takes a set of related features and pulls out the ones that tell us the most about the dataset we give itThe proposed categorization method is then put forth as a means of detecting instances of hate speech or abusive language. It is argued that ECNN is superior to other methods for identifying hateful content online. It can take in massive amounts of data and quickly return accurate results, especially for larger datasets. As a result, the proposed MPCA+ECNN algorithm improves not only the F-measure values, but also the accuracy, precision, and recall.