• Title/Summary/Keyword: Abstraction Hierarchy (AH)

Search Result 6, Processing Time 0.028 seconds

Work Domain Analysis Based on Abstraction Hierarchy: Modelling Concept and Principles for Its Application (추상화계층에 기반한 작업영역분석의 모델링 개념 및 적용 원칙)

  • Ham, Dong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.3
    • /
    • pp.133-141
    • /
    • 2013
  • As a work analysis technique, Work Domain Analysis (WDA) aims to identify the design knowledge structure of a work domain that human operators interact with through human-system interfaces. Abstraction hierarchy (AH) is a multi-level, hierarchical knowledge representation framework for modeling the functional structure of any kinds of systems. Thus, WDA based on AH aims to identify the functional knowledge structure of a work domain. AH has been used in a range of work domains and problems to model their functional knowledge structure and has proven its generality and usefulness. However, many of researchers and system designers have reported that it is never easy to understand the concepts underlying AH and use it effectively for WDA. This would be because WDA is a form of work analysis that is different from other types of work analysis techniques such as task analysis and AH has several unique characteristics that are differentiated from other types of function analysis techniques used in systems engineering. With this issue in mind, this paper introduces the concepts of WDA based on AH and offers a comprehensive list of references. Next, this paper proposes a set of principles for effectively applying AH for work domain analysis, which are developed based on the author's experiences, consultation with experts, and literature reviews.

Applying Work Domain Analysis for Ecological Interface Design of Safety Monitoring System in the Urban Railway Station (도시철도 역사 내 안전 감시 시스템의 생태학적 인터페이스디자인(EID)을 위한 작업 영역 분석(WDA) 적용)

  • Lee, Suk-Won;Lee, Bong-Geun;Back, Ji-Seung;Jo, Seong-Sik;Myung, Ro-Hae
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.264-270
    • /
    • 2010
  • This paper presents an application of the Ecological Interface Design (EID) theoretical framework for developing an optimal display of railway safety monitoring system (SMS) in stations. Especially, Work Domain Analysis (WDA) which is the preceding research for EID was conducted. This study proceeds as follows: First, urban railway SMS in stations was defined as a system boundary for WDA, and work environment for station personnels was analysed through Abstraction Hierarchy (AH). AH represents five levels (Functional Purpose, Values and Priority Measures, Purpose-related Functions, Object-related Process, Physical Object) of informations that station personnels obtain from work environment, and Work Domain Model (WDM) was derived as a result of the AH. To confirm how well WDM represents the real work environment of SMS, Scenario Mapping was conducted with experts who has been working as a station personnel for more than ten years. Lastly, thirteen additional information requirements that are not provided by the existing SMS as well as all the information that are provided by the existing SMS were extracted using confirmed WDM. These information requirements can be used as essential information for EID of urban railway SMS.

Ecological Interface Design for Air Traffic Control Display (항공기 관제 디스플레이의 생태학적 인터페이스 디자인에 관한 연구)

  • Ko, Seung-Moon;Myung, Ro-Hae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.103-113
    • /
    • 2006
  • The purpose of this study was to evaluate an effect of the new air traffic control display designed by Ecological Interface Design [EID]. The methodology of EID has not been applied to the development of the air traffic control display so far. To design a new air traffic control display by EID, We implemented Work Domain Analysis about the air traffic control domain and made the Work Domain Model that consisted of the five levels of the Abstraction Hierarchy. We extracted the Information Requirement from the completed Work Domain Model and the extracted information requirements from the model were used to design the new air traffic control display. We evaluated an effect of the new air traffic control display designed by EID. Participants for evaluating consisted of 14 active military air traffic controller of the Republic of Korea Air Force. Experiment was designed two factors within subject. Factors manipulated in the experiment included displays type to compare the existing type with the new ecological interface type and included complexity to compare the effect of the high complex situation with the effect of the low complex situation. Response time about questions with relation to air traffic collision situation, accuracy, and subjective work load were measured. The results reveled that EID type's display has a significant effect on response time, accuracy, and subjective work load and verified that EID could be applied to the air traffic control domain that is more complex and dynamic.

A Study on Ecological Interface Design for Navy Ship's Radar Display

  • Park, Young-Hwan;Myung, Ro-Hae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.353-362
    • /
    • 2012
  • Objective: The aim of this study is developing the navigation radar display of navy ship with ecological interface design (EID) framework. Background: Navy ship radar operator must perform navigation support tasks by monitoring the complex and diverse information presented on the radar display. Current radar display is limited in effective navigation aid and response to an unusual state immediately. It is necessary to develop an effective radar display. Method: Ten navy radar operators performed a series of trials in a low-fidelity radar simulation in which they attempted to solve the problems of current navigation situation. Results: The result demonstrated that the ecological interface's performance was better than the existing radar display on performance time and subjective mental workload. Conclusion: This study expand EID study field to navy ship radar display and confirm ecological display is better than existing radar display in performance time, subjective mental work load. Application: The result of this study may help to improve navy ship navigation radar display currently in use.

Development of Ecological Interface Design Prototype on Integrated Safety Management System Display in Subway Station Office (도시철도 역무실 통합 안전관리시스템 디스플레이의 Ecological Interface Design Prototype 개발)

  • Lee, Bong-Geun;Back, Ji-Seung;Jo, Sung-Sik;Myung, Ro-Hae;Lee, Duck-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.661-665
    • /
    • 2010
  • Current subway station's office employee must perform safety management tasks by monitoring the various safety management systems. But these monitoring systems are limited in effective situational awareness and response to a state of emergency immediately. It is necessary to develop an integrated safety management system display. In this study, we developed subway station safety management system's (CCTV, fire detection & alarm system, screen door control equipment) integrated prototype display with ecological interface design framework and evaluated prototype display interface's usability with GOMS model. The result was that the ecological interface's performance was better than existing safety management system's interface.

The Application of Work Domain Analysis for the Development of Vehicle Control Display (자동차 계기판 개발을 위한 WDA (Work Domain Analysis) 적용)

  • Nam, Taek-Su;Myung, Ro-Hae;Hong, Seung-Kweon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.127-133
    • /
    • 2007
  • The purpose of this study is to apply WDA (Work Domain Analysis) for the development of EID (Ecological Interface Design) of vehicle control display. At first, a work domain model on the automobile operation was developed using the AH (Abstraction Hierarchy) which is one of WDA tools. Secondly, information requirements that should be included in vehicle control displays were extracted on the basis of the completed model. The vehicle control information that typical automobiles interface displays currently provide occurred on the low level of the work domain model. This implies that current control displays impose too heavy cognitive workload on automobile drivers. Information requirements that can be included new vehicle control display are also discovered in the high level of the work domain model. The detailed information for EID was not proposed in this study. In the further study, the development of vehicle control display will be deeply conducted, using the results of this study.