• Title/Summary/Keyword: Absorption-desorption

Search Result 164, Processing Time 0.031 seconds

Development of analytical method for potential diesel oxygenate using SPME technique combinded with GC-FID

  • 이규현;이시진;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.354-357
    • /
    • 2004
  • The addition of oxygenates to diesel fuel can significantly reduce particulate emissions. Dibutyl maleate (DBM) and tripropylene glycol methyl ether (TGME) have been identified as possible additives based on their physicochemical characteristics and performance in engine test. However, their potential environmental impacts are unknown. therefore, practical considerations in the selection of an oxygenate additives should include cost, availability, compatibility with engines and fuel, and, particularly, its overall environmental impact. This study was investigated to determine optimal condition for the analysis of potential diesel oxygenates using SPME technique with GC-FID. Four fibers were compared and CAR/PDMS fiber was found to be the most sensitive when used direct-sampling. An absorption time of 30min and a desorption time of 5min provided to be the most sensitivity. The effects of experimental parameters such as the addition of salts, agitation, absorption time, compositon on the analysis were investigated. Analytical parameter such as linearity was also evaluated.

  • PDF

Hydrogen Absorption by Laves Phase Related BCC Solid Solution Alloys

  • Akiba, Etsuo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.3
    • /
    • pp.101-109
    • /
    • 1997
  • We propose a new concept of hydrogen absorbing alloy, "Laves phase related BCC solid solution". It was firstly found among the phases tormed in multicomponent nominal $AB_2$ alloys which consisted of Zr and Ti for the A metal site and 5A, 6A and 7A transition metals for the B metal sites. In these alloys a BCC solid solution often coexisted with a Laves phase. It showed stability of hydrides and reaction kinetics almost identical to intermetallics such as Laves phase alloys. We prepared an almost pure "Laves phase related BCC solid solution" and found that it had a large hydrogen capacity (more than 2 mass%) and fast hydrogen absorption and desorption kinetics at ambient temperature and pressure. This new hydrogen absorbing alloy may open a new era of hydrogen related application such as hydrogen vehicles.

  • PDF

EFFECTS OF NITROGEN AND CARBON ION IMPLANTATION INTO AUSTENITIC STAINLESS STEEL ON HYDROGEN ABSORPTION

  • Terashima, K.;Minegishi, T.;Matsusaka, K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.494-497
    • /
    • 1996
  • The effect of implanted nitrogen and carbon ion into SUS 304 on the absorption of hydrogen by cathodic chaging were studied. Implantations of $N^+$, $C^+$ were performed with doses of $3\times10^{17}$ ions $\textrm{cm}^2$ and $5\times10^{17}N^+cm^2$, and $5\times10^{17}C^+cm^2$, at an energy of 90 keV. Nitrides and carbide were investigatedby X-ray diffraction, Auger electron spectroscopy (AES) and scanning electron microscope (SEM). Formation of hydrides during cathodic charging were depressed by a modified surface layer. It is concluded that the both nitrides and carbides act as the barrier of hydrogen migration and the catalyst of desorption of cathodically charged hydrogen.

  • PDF

Activation Energies of Hydrogen Absorption and Desorption in Pd Thin Films for the α phase (팔라디움박막의 α 상영역 수소 활성화에너지)

  • Cho, Youngsin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.4
    • /
    • pp.191-196
    • /
    • 1999
  • 4-probe resistivity measurement technique was used to study hydrogen A-D(Absorption-Desorption)kinetics on Pd films(18 to 67nm thick) from 25 to $50^{\circ}C$, from 0 to 5 torr hydrogen pressure. Pd films were made on sapphire substrate by thermal evaporation technique under high vacuum at room temperature. Upto about 100 hydrogen A-D cyclings, no pulverization was observed, but film was detached partially from substrate. Forward reaction and backward reaction rate were analyzed separately. The activation energies of hydrogen A-D processes were obtained from the Arrhenius plot of the reaction rates. The activation energies of Pd films are not strongly dependent on the thickness of the film. But the activation energy of very thin film( l8nm thick) was smaller than the others.

  • PDF

Hydrogen Absorption/Desorption and Heat Transfer Modeling in a Concentric Horizontal ZrCo Bed (수평식 이중원통형 ZrCo 용기 내 수소 흡탈장 및 열전달 모델링)

  • Park, Jongcheol;Lee, Jungmin;Koo, Daeseo;Yun, Sei-Hun;Paek, Seungwoo;Chung, Hongsuk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.295-301
    • /
    • 2013
  • Long-term global energy-demand growth is expected to increase driven by strong energy-demand growth from developing countries. Fusion power offers the prospect of an almost inexhaustible source of energy for future generations, even though it also presents so far insurmountable scientific and engineering challenges. One of the challenges is safe handling of hydrogen isotopes. Metal hydrides such as depleted uranium hydride or ZrCo hydride are used as a storage medium for hydrogen isotopes reversibly. The metal hydrides bind with hydrogen very strongly. In this paper, we carried out a modeling and simulation work for absorption/desorption of hydrogen by ZrCo in a horizontal annulus cylinder bed. A comprehensive mathematical description of a metal hydride hydrogen storage vessel was developed. This model was calibrated against experimental data obtained from our experimental system containing ZrCo metal hydride. The model was capable of predicting the performance of the bed for not only both the storage and delivery processes but also heat transfer operations. This model should thus be very useful for the design and development of the next generation of metal hydride hydrogen isotope storage systems.

Changes of Hydrogen Storage Properties upon Hydrogen Absorption-Desorption Cycling in AB5-type Alloys (AB5계 합금에 있어서 수소 흡수-방출 cycling에 따른 수소 저장 특성 변화)

  • Noh, Hak;Choi, Jeon;Jung, So-Ri;Choi, Seung-Jun;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.3
    • /
    • pp.177-189
    • /
    • 2001
  • T hydrogen absorption-desorption behavior induced by thermal or hydrogen pressure cycling in a closed system was observed in hydrogen storage alloys, $(La-R-Mm)Ni_{4.5}Fe_{0.5}$, $MmNi_4Fe_{0.85}Cu_{0.15}$ and $(Ce-F-Mm)Ni_{4.7}Al_{0.2}Fe_{0.1}$. Thereby (La-R-Mm), Mm and (Ce-F-Mm) refer to La-rich mischmetal, mischmetal and Ce-free mischmetal respectively. As the results, it is found that the alloy stabilities during thermal cycling varies with alloy composition change. The highest stability occurs in $MmNi_4Fe_{0.85}Cu_{0.15}$ and the lowest stability in $(La-R-Mm)Ni_{4.5}Fe_{0.5}$. Comparing hydrogen pressure cycling with thermal cycling, pressure cycling causes severer degradation of the alloy $(Ce-F-Mm)Ni_{4.7}Al_{0.2}Fe_{0.1}$ than thermal cycling. When the 1500 times-cycled alloy is annealed at $400^{\circ}C$ for 3hrs under 1 atm of hydrogen pressure the hydrogen storage capacity is recovered only partially but not completely to the initial capacity. The amount of capacity loss after annealing is larger in the hydrogen pressure cycled samples than in the thermal cycled, suggesting an incoming of impure gas during hydrogen pressure cycling.

  • PDF

Determination of Cadmium(II) and Copper(II) by Flame Atomic Absorption Spectrometry after Preconcentration on Column with Pulverized Amberlite XAD-4 with Bismuthiol I

  • Park, Dong-Seok;Choi, Hee-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1375-1382
    • /
    • 2007
  • A column preconcentration method with pulverized Amberlite XAD-4 loaded with bismuthiol I (BI) has been developed for the determination of trace Cd(II) and Cu(II) in various real samples by flame atomic absorption spectrophotometry. Various experimental conditions, such as the size of XAD-4, adsorption flow rate, amount of bismuthiol I, stirring time for adsorbing bismuthiol I on XAD-4, pH of sample solution, amount of XAD-4- BI, desorption solvent, and desorption flow rate, were optimized. Also, the adsorption capacity and the adsorption rate of Cd(II) and Cu(II) on XAD-4-BI were investigated. The interfering effects of various concomitant ions were investigated, Bi(III), Sn(II) and Fe(III) were found to affect the determination. But the interference by these ions was completely eliminated by adjusting the amount of XAD-4-BI resin to 0.70 g, although the adsorption flow rate was slower. For Cd(II) our proposed technique obtained a dynamic range of 0.5-40 ng mL-1, a correlation coefficient (R2) of 0.9913, and a detection limit of 0.3 ng mL-1. For Cu(II), the corresponding values were 2.0-120 ng mL-1, 0.9921 and 1.02 ng mL-1. To validate this proposed technique, the aqueous samples (stream water, reservoir water, tap water and wastewater), the diluted brass sample and the plastic sample, as real samples, were used. Recovery yields of 91-103% were obtained. These measured data were not different from ICP-MS data at 95% confidence level. Our proposed method was also validated using rice flour CRM (normal, fortified) samples. From the results of our experiment, we found that the technique we present here can be applied to the determination of Cd(II) and Cu(II) in various real samples.

A Numerical Model for Heat and Mass Transfer Processes within a Vertical Tube GAX Absorber (수직원관형 GAX 흡수기 내부의 열 및 물질전달과정에 대한 수치모델)

  • 천태식;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.102-111
    • /
    • 2000
  • A numerical model which simulates the simultaneous heat and mass transfer within a vertical tube GAX absorber was developed. The ammonia vapor and the solution liquid are in counter-current flow, and the hydronic fluid flows counter to the solution liquid. The film thickness and the velocity distribution of the liquid film were obtained by matching the shear stress at the liquid-vapor interface. Two-dimensional diffusion and energy equations were solved in the liquid film to give the temperature and concentration, and a modified Colburn-Drew analysis was used for the vapor phase to determine the heat and mass fluxes at the liquid-vapor interface. The model was applied to a GAX absorber to investigate the absorption rates, temperature and concentration profiles, and mass flow rates of liquid and vapor phases. It was shown that the mass flux of water was negligible compared with that of ammonia except the region near the liquid inlet. Ammonia absorption rate increases rapidly near the liquid inlet and decrease slowly. Both the absorption rate of ammonia vapor and the desorption rate of water near the liquid inlet increase as the vapor mass flow rate increases, but the mass fluxes of the ammonia and the water near the liquid outlet decrease as the mass flow rate of the vapor increases.

  • PDF

A Study on VOCs Adsorption Properties Using Fine-fiber (극세섬유를 이용한 VOCs흡착 특성에 관한 연구)

  • An, Hyung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.35-40
    • /
    • 2010
  • This study is to develop of an adsorbent for the removing of human body harmful benzene, toluene, and p-xylene as VOCs. Thus, this study researched the adsorption efficiency of the commercial ACF and the reactivated ACF by KOH/ACF to molar 1: 1. As the results, the effects have shown to enlarge with the increasing of VOCs concentration for adsorptive breakthrough time and breakthrough percentage on each substance. Also, the study have investigated as a similar tendency in case of desorption efficiency for toluene and p-xylene at constant concentration as 125PPM and 0.5$\ell$/min volume flow rate. But in case of benzene, it has been investigated to have rather lower desorption efficiency re-activation ACF than commercial ACF.