• 제목/요약/키워드: Absorption test

검색결과 1,431건 처리시간 0.031초

수트리억제 충실 전력 케이블(TR CNCE-W)의 재료에 대한 평가 기술 (Assessment of material analysis for TR CNCE-W)

  • 소진중;심대섭;김규섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.221-222
    • /
    • 2007
  • The test method on materials of electrical power cable are used in accordance with 18 specifications of IEC, ICEA, KS and KEPCO Spec. The validation of test methods were checked and established by solving the problems occurred during the test. These tests are tensile strength, hot creep, shrink back, environmental stress cracking, flammability, oxygen index, absorption coefficient, differential scanning calorimetry, amount of ion in semiconductor, void, amber, contaminant and water tree etc. The performance test of power cable made by A, B, C, D company were evaluated and compared.

  • PDF

석재자원에 대한 물리적 특성에 관한 연구 (A Study on the Physical Characteristics of Building Stone Resources)

  • 이창신;강추원;정순오
    • 화약ㆍ발파
    • /
    • 제22권1호
    • /
    • pp.81-91
    • /
    • 2004
  • 본 연구논문에서는 우리나라 주요 석재인 포천석, 문경석. 일동석 원석을 경기도 포천군 창수면과 신북면에 위치한 삼우석재, 신라석재, 가나석재, 청진석재 등을 방문하여 원석과 판석을 색상, 조직, 구성광물, 입도의 차이에 따라 포천석 원석 42개, 일동석 원석 4개의 원석를 채취하였으며, 경북 상주와 문경시에 위치한 화광산업, 고모치 석재, 세진석재를 방문하여 문경석 원석 12개를 채취하였다. 본 현장에서 채취한 시료에 대한 비중, 공극율, 흡수율. Point Load Test, 삼축압축시험, Brazilim Test, 암석학적 시험 및 분석, 화학적 시험 및 분석을 통해 포천석, 문경석, 일동석 원석의 물리적 특성을 규명하여 석재의 용도에 따른 타당성을 파악하는데 목적이 있다.

천연염색의 매염제 흡착 및 매염조건에 관한 연구 (The Study on Mordant Absorption and Mordanting Treatment Condition of Natural Dyeing)

  • 주영주
    • 복식
    • /
    • 제55권5호
    • /
    • pp.101-107
    • /
    • 2005
  • In this article, mordant absorption rate by the Change of temperature and fabric, discharge level by water washing, mordant density and method in mordant dye are going to be handled. Besides, how treatment method will have an effect on absorption rate and color, is also going to be covered. An atom extinction photometer was used to measure the amount of mordant absorbed in fabric at each temperature and mordant type. It turned out that absorption rate differs according to the type of mordant and sample or temperature. Also it turned out that the mordant input amount has little influence on absorption rate, that is to say, if though you use more mordants, just tiny amount of mordant is going to be absorbed in cloth. It is true that the higher temperature goes up, the better mordant absorption gets. It is found that the type of mordant and sample, treatment period affects the discharge rate. Normally $15{\~}98\%$ mordant comes off the fabric by water washing, to be specific, $17{\~}47\%$ Iron by water washing and it has better performance on cotton and nylon than silk, $1\%{\~}52\%$ Aluminum by water washing and better absorption on silk, $36{\~}89\%$ Chrome by water washing and better absorption on silk, $50{\~}89\%$ copper by water washing and better absorption on silk, poor on cotton. The examination of the K/S values and colors between before and after soaping has been conducted under the circumstance that the test fabrics had been treated at $80^{\circ}C$ for 30 minutes with $0.2\%$ soaping solution. In case of pre-mordanted fabrics, the K/S value nosedived after soaping, meanwhile densely mordanted fabric's K/S value soared but after soaping, it dropped sharply. It turned out that soaping treatment deteriorates absorption much more than water washing. It's considered that $0.1 \%$ (W/V) of mordant density is appropriate.

Moisture Absorption and Desorption Properties of Douglas Fir, Hinoki, Larch, Plywood, and WML Board in Response to Humidity Variation

  • PARK, Hee-Jun;JO, Seok-Un
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권4호
    • /
    • pp.488-502
    • /
    • 2020
  • In this study, the moisture absorption and desorption properties presented by the Health-Friendly Housing Construction Standards of South Korea were compared using the wood of three tree species (Douglas-fir, Hinoki, Larch) and two types of wood-based materials(Plywood, WML Board). The national standards for functional building materials present that the amounts of moisture absorption and desorption should be at least 65g/㎡ on average, respectively according to the test method under KS F 2611:2009. Therefore, in this study, the moisture absorption/desorption properties of materials with no treatment (Control), with punching, and with surface stain finishing and the moisture absorption/desorption property improvement effects of the treatments were compared and analyzed. According to the results of this study, it was evaluated that all five types of wood and wood-based materials tested did not satisfy the amount of moisture absorption/desorption of at least 65g/㎡, which is the performance standard for moisture absorption/desorption functional building materials, indicating that untreated wood and wood-based materials cannot be applied as functional finishing materials according to the Health-Friendly Housing Construction Standards. The surface stain finishing greatly reduced the moisture absorption and desorption rates of the materials, and the amounts of moisture absorbed and desorbed were also shown to decrease by at least two times on average. When the surfaces of the materials were punched with Ø4mm holes at intervals of 20 mm, the moisture absorption/desorption areas increased from 18% to 51%, and this increase was shown to be capable of increasing the amounts of moisture absorbed/desorbed by 29% on average at the minimum, and 81% on average at the maximum. The effects of punching were shown to be identical even in cases where the materials were stain finished. For the application of wood or wood-based materials as eco-friendly, health-friendly, and moisture absorption/desorption functional building materials hereafter, it is judged that new physical and chemical improvement studies should be conducted, and treatment methods should be developed.

0.1 MW급 연소후 습식아민 CO2 포집 Test Bed 공정개선효과 검증 (Process Improvement and Evaluation of 0.1 MW-scale Test Bed using Amine Solvent for Post-combustion CO2 Capture)

  • 박종민;조성필;임태영;이영일
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권1호
    • /
    • pp.103-108
    • /
    • 2016
  • Carbon Capture and Storage technologies are recognized as key solution to meet greenhouse gas emission standards to avoid climate change. Although MEA (monoethanolamine) is an effective amine solvent in $CO_2$ capture process, the application is limited by high energy consumption, i.e., reduction of 10% of efficiency of coal-fired power plants. Therefore the development of new solvent and improvement of $CO_2$ capture process are positively necessary. In this study, improvement of $CO_2$ capture process was investigated and applied to Test Bed for reducing energy consumption. Previously reported technologies were examined and prospective methods were determined by simulation. Among the prospective methods, four applicable methods were selected for applying to 0.1 MW Test Bed, such as change of packing material in absorption column, installing the Intercooling System to absorption column, installing Rich Amine Heater and remodeling of Amines Heat Exchanger. After the improvement construction of 0.1 MW Test Bed, the effects of each suggested method were evaluated by experimental results.

태양열에 의한 냉방 및 난방시스템의 성능향상(II) - 태양열을 이용한 흡수식 냉동기의 성능 - (The Improvement of the Performance of Solar Cooling and Heating Systems (II) - The Characteristics of an Absorption Refrigeration Powered by Solar Systems -)

  • 박문수;김무근;김효경;노승탁
    • 설비공학논문집
    • /
    • 제1권1호
    • /
    • pp.46-54
    • /
    • 1989
  • The purpose of this study is to obtain the dynamic characteristics of an absorption refrigerator powered by solar energy by experiments. Since the absorption refrigerator power by solar energy should have the characteristics which is suitable for the intermittence and rarity of solar energy, not only the characteristics of the steady state operations but also the partial load and the transient operations should be considered. The minimum available temperature of the storage tank should be known, and the absorption refrigerator can be suitably selected for air-conditioning systems. In this study, the experimental data of the transient state for on-off and warming-up operations has been obtained. Also the experiments are performed which test the minimum available temperature of the storage tank. The results show that it takes 1 hour to get to the steady state of the absorption refrigerator, and the minimum available temperature of the storage tank is about $68^{\circ}C$, and show that in the partial load operations the performance of the absorption refrigerator is improved by applying the modified control method to on-off operations.

  • PDF

축 하중을 받는 Al/CFRP 혼성튜브의 압궤모드와 에너지흡수 특성에 관한 연구 (A Study on the Collapse Modes and Energy Absorption Characteristics of AI/CFRP Compound Tubes Under Axial Compression)

  • 차천석;이길성;정진오;양인영
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1768-1775
    • /
    • 2004
  • The compressive axial collapse tests were performed to investigate collapse modes and energy absorption characteristics of Al/CFRP compound tubes which are aluminum tubes wrapped with CFRP(Carbon Fiber Reinforced Plastics) outside the aluminum circular and square tubes. Based on collapse characteristics of aluminum tubes and CFRP tubes respectively, the axial collapse tests were performed for Al/CFRP compound tubes which have different CFRP orientation angles. Test results showed that Al/CFRP compound tubes supplemented the unstable brittle failure of CFRP tubes due to ductile nature of inner aluminum tubes. In the light-weight aspect, specific energy absorption were the highest for Al/CFRP, CFRP in the middle, and aluminum the lowest. Also, specific energy absorption of circular tubes was higher than square tubes'. It turned out that CFRP orientation angle of Al/CFRP compound tubes influence specific energy absorption together with the collapse modes of the tubes.

ENERGY ABSORPTION CHARACTERISTICS IN SQUARE OR CIRCULAR SHAPED ALUMINUM/CFRP COMPOUND TUBES UNDER AXIAL COMPRESSION

  • CHA C. S.;LEE K. S.;CHUNG J. O.;MIN H. K.;PYEON S. B.;YANG I. Y.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.501-506
    • /
    • 2005
  • With the respective collapse characteristics of aluminum and CFRP (Carbon Fiber Reinforced Plastics) tubes in mind, axial collapse tests were performed for aluminum/CFRP compound tubes, which are composed of square or circular shaped aluminum tubes wrapped with CFRP outside. In this study, the collapse modes and the energy absorption characteristics were analyzed for aluminum/CFRP compound tubes which have different fiber orientation angle of CFRP. Fracture modes in the aluminum/CFRP compound tubes were rather stable than those in the CFRP tubes alone, probably due to the ductile nature of the inner aluminum tubes. The absorbed energy per unit volume of the aluminum or the aluminum/CFRP compound tubes was higher than that of CFRP tubes. Meanwhile, the absorbed energy per unit mass, for the light-weight design aspect was higher in the aluminum/CFRP compound tubes than in the aluminum tubes or the CFRP tubes. The energy absorption turned out to be higher in circular tubes than in square tubes. Beside the collapse modes and the energy absorption characteristics were influenced by the orientation angle, and the compound tubes took the most effective energy absorption when the fiber orientation angle of CFRP was 90 degrees.

온도 및 수분이 탄소/아라미드 섬유 복합재의 파손거동에 미치는 영향 (The Effects of Temperature and Water Absorption on Failure Behaviors of Carbon / Aramid Fiber Composites)

  • 권우덕;권오헌;박우림
    • 한국안전학회지
    • /
    • 제37권4호
    • /
    • pp.11-19
    • /
    • 2022
  • This paper presents the effects of high temperature and water absorption on the mechanical behaviors of carbon-aramid fiber composites, specifically their strength, elastic modulus, and fracture. These composites are used in industrial structures because of their high specific strength and toughness. Carbon fiber composites are vulnerable to the impact force of external objects despite their excellent properties. Aramid fibers have high elongation and impact absorption capabilities. Accordingly, a hybrid composite with the complementary properties and capabilities of carbon and aramid fibers is fabricated. However, the exposure of aramid fiber to water or heat typically deteriorates its mechanical properties. In view of this, tensile and flexural tests were conducted on a twill woven carbon-aramid fiber hybrid composite to investigate the effects of high temperature and water absorption. Moreover, a multiscale analysis of the stress behavior of the composite's microstructure was implemented. The results show that the elastic modulus of composites subjected to high temperature and water absorption treatments decreased by approximately 22% and 34%, respectively, compared with that of the composite under normal conditions. The crack behavior of the composites was well identified under the specimen conditions.

간실질세포(肝實質細胞)의 손상(損傷)이 철흡수(鐵吸收)에 미치는 영향(影響)에 관(關)한 실험적(實驗的) 연구(硏究) (The Relationship Between Intestinal Iron Absorption and Hepatic Parenchymal Cell Damage)

  • 김목현;한심석
    • 대한핵의학회지
    • /
    • 제5권2호
    • /
    • pp.19-40
    • /
    • 1971
  • Since the iron balance is maintained by regulated intestinal absorption rather than regulated excretion, there have been many reports concerning the factors which may influence the intestinal iron absorption. As the liver is the largest iron storage organ of the body, any hepatocellular damage may result in disturbances in iron metabolism, e,g., frequent co-existence of hemochromatosis and liver cirrhosis, or elevated serum iron level and increased iron absorption rate in patients with infectious hepatitis or cirrhosis. In one effort to demonstrate the influence of hepatocellular damage on intestinal iron absortion, the iron absorption rate was measured in the rabbits whose livers were injured by a single subcutaneous injection of carbon tetrachloride (doses ranging from 0.15 to 0.5cc per kg of body weight) or by a single irradiation of 2,000 to 16,000 rads with $^{60}Co$ on the liver locally. A single oral dose of $1{\mu}Ci\;of\;^{59}Fe$-citrate with 0.5mg of ferrous citrate was fed in the fasting state, 24 hours after hepatic damage had been induced, without any reducing or chelating agents, and stool was collected for one week thereafter. Serum iron levels, together with conventional liver function tests, were measured at 24, 48, 72, 120 and 168 hours after liver damage had been induced. All animals were sacrificed upon the completing of the one week's test period and tissue specimens were prepared for H-E and Gomori's iron stain. Following are the results. 1. Normal iron absorption rate of the rabbit was $41.72{\pm}3.61%$ when 0.5mg of iron was given in the fasting state, as measured by subtracting the amount recovered in stool collected for 7 days from the amount given. The test period of 7 days is adequate, for only 1% of the iron given was excreted thereafter. 2. The intestinal iron absorption rate and serum iron level were significantly increased when the animal was poisoned by a single subcutaneous injection of 0.15cc. per kg. of body weight of carbon tetrachloride or more, or the liver was irradiated with a single dose of 12,000 rads or more. The results of liver function tests which were done simultaneously remained within normal limit except SGOT and SGPT which were somewhat increased. 3. In each case, there has been good correlation between the extent of liver cell damage and degree of increased iron absorption rate or serum iron level. 4. The method of liver damage appeared to make no obvious difference in the pattern of iron deposit in liver. This may be partly due to the fact that tissue specimens were obtained too late, for by this time the elevated serum iron level had returned within normal range and the pathological changes were almost healed. 5. The possible factors and relationship between intestinal iron absorption and hepatic parenchymal cell damage has been discussed.

  • PDF