• 제목/요약/키워드: Absorption material

검색결과 1,918건 처리시간 0.031초

Absorption of d-Limonene in Orange Juice into a Laminated Food Package Studied with a Solid Phase Micro-extraction Method

  • Lee, Hahn-Bit;Yang, Hee-Jae;Min, Sea-C.
    • 산업식품공학
    • /
    • 제14권4호
    • /
    • pp.354-358
    • /
    • 2010
  • The methods for determining the diffusion parameters for the diffusion of d-limonene, a major volatile compound of orange juice, through a multi-layered food packaging material and predicting its absorption into the packaging material have been investigated. The packaging material used was the 1.5-mm thick multi-layered packaging material composed of high impact polystyrene (HIPS), polyvinylidene chloride (PVDC), and low density polyethylene (LDPE). Orange juice was placed in a cell where volatiles were absorbed in the sample package and kept at $23{\pm}2^{\circ}C$ for 72 hr. The d-limonene absorbed in a 1.5-mm thick multi-layered food packaging material was analyzed by a solid phase micro-extraction (SPME). The absorption parameters for the absorption of d-limonene in the packaging material were determined and absorption of d-limonene into the packaging material was predicted using absorption storage data. The SPME desorption at $60^{\circ}C$ for 1 hr resulted in the most sensitive and reproducible results. The diffusion coefficients of d-limonene in the packaging material and the partition coefficient at $23{\pm}2^{\circ}C$ were approximately $1-2{\times}10^{12}m^2$/s and 0.03, respectively. The absorption profile no earlier than 30 hr was fit well by a model derived from the Fick's law.

흡음을 위한 다공성 물질의 최적형상설계에서 물성치의 영향 (Effects of Material Properties on Optimal Configuration Design of Absorbing Porous Materials)

  • 이중석;김윤영;강연준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.622-624
    • /
    • 2008
  • This investigation studies the effects of material properties and corresponding propagation wave types on optimal configurations of sound absorbing porous materials in maximizing the absorption performance by topology optimization. The acoustic behavior of porous materials is characterized by their material properties which determine motions of the frame and the air. When the frame has a motion, two types of compressional wave propagate in the porous material. Because each wave in the material make different influence on the absorption performance, it is important to understand the relative contribution of each wave to the sound absorption. The relative contribution of the propagating waves in a porous material is determined by the material properties, therefore, an optimal configuration of a porous material to maximize the absorption performance is apparently affected by the material properties. In fact, virtually different optimal configurations were obtained for absorption coefficient maximization when the topology optimization method developed by the authors was applied to porous materials having different material properties. In this investigation, some preliminary results to explain the findings are presented. Although several factors should be considered, the present investigation is focused on the effects of the material properties and corresponding propagation waves on the optimized configurations.

  • PDF

음장제어용 막재료의 음향 및 단열특성 (Sound Absorption and Thermal Insulation Characteristics of Membrane Used for Sound Field Control)

  • 정정호;김정욱;정재군;조병욱
    • 한국소음진동공학회논문집
    • /
    • 제22권2호
    • /
    • pp.103-114
    • /
    • 2012
  • Nowadays membrane material is widely used for large indoor spaces and long spaces such as traditional market. Thermal insulation and sound field control performance is considered as a main properties for design of such buildings. In this paper sound absorption and thermal insulation properties of membrane material was investigated. Firstly, normal incidence sound absorption coefficient of 10 kinds of glass wool textiles showed that sound absorption coefficient was increased in proportion of thickness and surface density of textile. Sound absorption coefficient of 4 kinds of sound absorptive inner membrane with outer membrane was tested in the reverberation chamber. Sound absorption coefficient of mid frequency range was about 0.4 ~ 0.6. Also, sound absorption coefficient was changed by the air space behind the membrane material. Secondly, sound field control performance was investigated using mock-up space. By the installation of sound absorption membrane material, reverberation time was decreased and speech intelligibility was increased. Finally, thermal resistance and room temperature in two kinds of mock-up rooms were tested, simultaneously. Results of thermal properties showed thermal insulation properties ware increased by adding inner membrane material underneath the outer membrane.

황토를 이용한 친환경 유공 흡음보드의 흡음특성 (Absorption Characteristics of Perforated Environment Friendly Sound Absorbing Board using Hwangto)

  • 김선우;박현구
    • KIEAE Journal
    • /
    • 제11권1호
    • /
    • pp.3-8
    • /
    • 2011
  • Sound absorbing materials used for lightweight panels and interior material are mainly made of fibroid material such as glass wool or rock wool. However these fiber type sound absorbing materials have some problems such that sound absorption could be decreased as time goes by because of durability. In addition, dust scattering from fiber type material can cause another problem in health. In this point of view, this study aims to develop environment friendly sound absorbing material using Hwangto(so called loess or yellow soil), a traditional housing material. Hwangto is natural housing material in Korea and generally known for improving indoor air quality. Hwangto panel is made to construct on the floor, wall and ceiling, and expected that there is not enough absorption. Present study tried to develop environment friendly sound absorbing material that has high sound absorption performance with good environment performance in terms of air quality. Pore rate was designed to maximize the absorption in the specific frequency bands, and two kinds of backing space were applied in order to see the effect of backing space. As a result peak frequency that has maximum absorption is going high as the pore rate is increased. The backing space provides more absorption and makes the peak frequency down to low.

통기성을 갖는 막재료의 흡음특성 (Sound Absorption Characteristics of Permeable Membrane)

  • 정정호;김정중;김규제
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.270-275
    • /
    • 2009
  • Sound absorption characteristics of membrane system which are used in stadiums and arenas were investigated. Theoretical studies on acoustic properties of single and double leaf permeable membrane conducted. Also, experimental studies on sound absorption characteristics of combined membrane system that is composed of outer and inner membrane material were conducted. In this study, sound absorption characteristics of each membrane were investigated by experiments in reverberation chamber. 4 types of permeable membranes and a non-permeable membrane were used for experiments. Air space behind membrane material and tension on the membrane was varied. Sound absorption performance of permeable membrane materials was confirmed. As increasing air space behind the membrane material, sound absorption coefficient was increased. In a resonance absorption frequency band sound absorption coefficient varied more dramatically. Sound absorption characteristics were flat in mid and high frequency range and sound absorption coefficient was from 0,3 to 0,5. Also sound absorption coefficient was increased by the increment of surface density and air permeability of membrane. However, over the certain value of air permeability, sound absorption coefficient was decreased. These results can be used as design factors and method for the room acoustic design of dome-stadiums and large free-form buildings.

  • PDF

무향수조를 위한 흡음재질에 관한 연구 (A study on the new absorption material for anechoic water tank)

  • 김성부;이종규
    • 수산해양기술연구
    • /
    • 제48권2호
    • /
    • pp.174-179
    • /
    • 2012
  • A new absorption material, cellulose sponge soaked in cement, was made for anechoic water tank and its acoustical properties were investigated by pulse methods. The sound absorption coefficient a (dB/cm) of the material was obtained in the frequency range of 40~120kHz from the echo reduction ER (dB) and insertion loss IL (dB) data. The result was averagely 1.8dB/cm higher than the sound absorption coefficient a (dB/cm) of cork-filled rubber which is one of the most effective absorption materials. The wedge (1.2~5.0cm long) type absorption tiles were made with this new material. The echo reduction ER (dB) of the absorption tile with 5.0cm wedge measured in water tank was higher than 20dB in the experimental frequency range.

테프론 막 재료의 흡음특성 및 적용효과 연구 (Sound Absorption Characteristics and Application Effect of PTFE Membrane Material)

  • 정정호;손장열;김정중
    • 한국소음진동공학회논문집
    • /
    • 제17권4호
    • /
    • pp.342-349
    • /
    • 2007
  • Following the 2002 World-Cup held in Korea, studies have been actively conducted on plans to utilize all-weather stadiums of fine figures, where large-scale spaces are available for various utilizations. In Japan, dome-type stadiums have been built and are utilizing across the whole nation not only for sports events but also variety of other large-scale events. PTFE(poly tetra fluoro ethylene) is one of the membrane material mainly used for the outer ceiling surface of membrane structures. However, there has not been enough research on the acoustical properties of PTFE membrane material which has been widely used in the multi-purpose stadiums. In this study, air permeability values and sound absorption coefficient of PTFE membrane materials were measured and evaluated in the gymnasium. From the results of measurements of sound absorption coefficient and air permeability of inner membrane materials, it was found that the sound absorption coefficient was good in the air permeability range of $5{\sim}15\;cc/cm^2/s$. Also the relation ship between air permeability and sound absorption coefficient was very high and the sound absorption coefficient was the highest in the range of $6{\sim}9\;cc/cm^2/s$. Secondly, an analysis on the measurements sound absorption characteristics of inner membrane material reveals that the overall sound absorption coefficient was stabilized(higher than 0.5 throughout the whole frequency bands) when the air space behind the membrane material was deeper than 600 mm. When PTFE sound absorptive membrane material was installed in the ceiling of gymnasium, it was confirmed that sound absorptive membrane material can reduce reverberation and increase speech intelligibility in the gymnasium.

Peanut Shells as an Environmentally Beneficial Sound-Absorbing Material

  • JANG, Eun-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권3호
    • /
    • pp.179-185
    • /
    • 2022
  • This study investigated the prospect of using peanut shells as an alternative and green sound-absorbing material. The sound-absorption coefficients were determined after filling impedance tubes of 30, 60, and 90 mm in height with peanut shells. The sound-absorption ability increased as the filling height increased, showing noise reduction coefficient (NRCs) of 0.23, 0.43, and 0.54 for the 30-, 60-, and 90-mm heights, respectively. In addition, for sounds greater than 2,000 Hz, the average sound-absorption coefficient of peanut shells in the 60- and 90-mm heights was 0.9. In summary, peanut shells were found to have good sound-absorption properties comparable to or better than those of bamboo, sisal, jute, and wool, and this research suggests that peanut shells may be useful as an environmentally friendly sound-absorbing material.

Experimental Investigation of the Sound Absorption Capability of Wood Pellets as an Eco-Friendly Material

  • JANG, Eun-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권2호
    • /
    • pp.126-133
    • /
    • 2022
  • In this study, I used wood pellets as an eco-friendly sound-absorbing material. The aim of the research was to analyze the effect of the filling height of wood pellets on sound absorption. This was done using two types of wood pellets of different lengths (A group: 1.5-3 cm, B group: less than 1.5 cm). With increasing filling height of the wood pellets, the optimum sound absorption shifted towards a lower frequency. The group B wood pellets had better sound absorption capacity than the group A ones. The optimum sound absorption coefficient of group A filled to a height of 7 cm was 0.722 at 864 Hz. On the other hand, that of group B filled to a height of 7 cm was 0.764 at 862 Hz, 5.82% higher than that of group A. While wood pellets are used as an eco-friendly fuel, the results of this study suggest the possibility of using wood pellets as an eco-friendly sound-absorbing material.

Investigation of Sound Absorption Ability of Acanthopanax senticosus Wastes

  • Eun-Suk, JANG
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권6호
    • /
    • pp.404-413
    • /
    • 2022
  • This study aims to investigate the sound absorption ability of Acanthopanax senticosus wastes as an eco-friendly sound-absorbing material. The sound absorption coefficient was examined with different heights of A. senticosus wastes filling (40, 60, 80, and 100 mm) in impedance tubes. The sound absorption peaks shifted to a lower frequency as the height of A. senticosus wastes inside the tubes increased. The sound absorption ability at filling heights of 80 and 100 mm was obtained as 0.3M and 0.5M grades, respectively, based on KS F 3503. The results suggest that A. senticosus wastes exhibit good sound absorption ability and can therefore be used as an efficient, eco-friendly sound-absorbing material.