• 제목/요약/키워드: Absorption Cooling System

검색결과 152건 처리시간 0.026초

신흡수용액을 이용한 중온수 흡수식 냉동기의 사이클 해석 (Cycle Analysis of Hot Water Driven Absorption Refrigerator with New Working Absorption Solution)

  • 권오경;윤재호;문춘근;윤정인
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1241-1248
    • /
    • 2002
  • Performance extension of the absorption refrigerator with LiBr solution is often faced to operate very close to the crystallization limit. Especially in the development of an air-cooled cycle, the crystallization of working solution in the system is a very difficult problem to overcome. This paper describes the cycle of hot water driven absorption system using a new working absorption solution instead of LiBr solution to improve the efficiency. In this study, we found out the characteristics of new working absorption solution through the cycle simulation and compared LiBr solution to evaluate. The effect of cooling water temperature, weak solution flow rate, hot water temperature and hot water flow rate were also examined. The COP is increased 22% higher in the case of LiBr+Li1+LiC1+LiNO$_3$$H_2O$, 2% LiBr+HO(CH$_2$)$_3$OH+$H_2O$ than that of LiBr solution for the same operation condition.

병원 건물의 히트펌프 냉난방 시스템 적용을 위한 시뮬레이션 연구 (Study on the Simulation of Heat Pump Heating and Cooling Systems to Hospital Building)

  • 최영돈;한성호;조성환;김두성;엄철준
    • 대한기계학회논문집B
    • /
    • 제32권4호
    • /
    • pp.275-282
    • /
    • 2008
  • In Korea, air source heat pump system is less efficient than conventional heat source facilities, because the air temperature in winter season is so low that COP of air source heat pump system drops below 3.0. Therefore, the study on the application of heat pump heating and cooling systems is crucial for the efficient popularization of heat pump. In this work, we present the dynamic analysis of energy consumption for the large hospital building by heat resistance-capacitance method. The system simulation of water storage air source heat pump is additionally performed by changing sizes and locations of the hospital building. The computed results show that energy cost of water storage air source heat pump is low, so it is more economical than absorption chiller & heater.

국내외 가스냉방 지원제도 비교분석 (Analysis on the Domestic and Abroad Policies and Regulations for the Gas Cooling Systems)

  • 김용찬;조금남
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.201-207
    • /
    • 2009
  • In this study, the domestic and abroad policies and regulations on the gas cooling systems have been analyzed. First, the current policies were investigated in Korea and other countries to stimulate the distribution of the gas cooling systems. The advantage and disadvantage for each policy were evaluated. Finally, several policies were proposed for the effective distribution of the gas cooling systems.

  • PDF

마이크로터빈이 포함된 빌딩마이크로그리드시스템의 병원건물의 에너지성능평가 (Energy Performance Evaluation of Building Micro-grid System Including Micro-turbine in Hospital Buildings)

  • 김병수;홍원표
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 추계학술대회 논문집
    • /
    • pp.279-283
    • /
    • 2009
  • Distributed generation(DG) of combined cooling, heat. and power(CCHP)has been gaining momentum in recent year as efficient, secure alternative for meeting increasing energy demands. This paper presents the energy performance of microturbine CCHP system equipped with an absorption chiller by modelling it in hospital building. The orders of study were as following. 1)The list and schedule of energy consumption equipment in hospital were examined such as heating and cooling machine, light etc. 2) Annual report of energy usage and monitoring data were examined as heating, cooling, DHW, lighting, etc. 3) The weather data in 2007 was used for simulation and was arranged by meteorological office data in Daejeon. 4) Reference simulation model was built by comparison of real energy consumption and simulation result by TRNSYS and ESP-r. The energy consumption pattern of building were analyzed by simulation model and energy reduction rate were calculated over the cogeneration. As a result of this study, power generation efficiency of turbine was about 30% after installing micro gas turbine and lighting energy as well as total electricity consumption can be reduced by 40%. If electricity energy and waste heat in turbine are used, 56% of heating energy and 67% of cooling energy can be reduced respectively, and total system efficiency can be increased up to 70%.

  • PDF

이중 효용과 일중 효용을 복합한 다단 재생 고효율 흡수식 냉동 사이클 개발 (Development of High Efficiency Cycle by Combining Double-Effect with Single-Effect Absorption Chiller Systems)

  • 윤상국
    • 설비공학논문집
    • /
    • 제29권7호
    • /
    • pp.360-365
    • /
    • 2017
  • Recently, development efforts of triple-effect absorption chiller have been increased in order to improve the efficiency of double-effect absorption chiller. However, triple-effect absorption chiller has some disadvantages, including high corrosion characteristic of LiBr solution at high temperature of $200^{\circ}C$. Moreover, it is necessary to develop new components for operation under high pressure of 2 bars even though COP is increased to 1.6 or 1.7. The objective of this study was to introduce a new system by combining double effect absorption chiller with single effect absorption chiller with multi-generators using bypass flow of LiBr dilute solution to $3^{rd}$ generator to overcome the disadvantages of triple-effect chiller and improve energy efficiency. Results indicate that the new absorption cycle had a much higher efficiency than double-effect chiller system, showing significant improvement when bypass solution flow rate of 25% was applied to the $3^{rd}$ generator using the main dilute solution of the absorber. The COP of the new chiller system was found to be 1.438, which was 21.7% higher than that (1.18) of the present double-effect system. The COP was decreased when solution by-pass rate to the $3^{rd}$ generator was increased. In addition, lower cooling water temperature caused higher COP. Therefore, the multi-generator system with by-pass solution might be an excellent chiller alternative to triple-effect absorption chiller with higher efficiency.

폐온수 이용 제 2 종 흡수식 열펌프의 열역학적 설계해석 (Thermal Design Analysis of an Absorption Heat Transformer for using Waste Hot Water)

  • 강병하;김영인;이춘식
    • 대한설비공학회지:설비저널
    • /
    • 제14권4호
    • /
    • pp.285-292
    • /
    • 1985
  • A computer program for thermal design analysis has been developed to predict the performance of an absorption heat transformer. The effects of temperature boost, cooling water temperature and effectiveness of components on the performance were investigated. Not only the detailed thermodynamic states such as temperatures, concentration of the solution, and mass flow rate at each point of the process but also the heat transfer rate in each component could be easily determined with given input parameters. The system's coefficient of performance (COP) was seen to increase with increased effectiveness of components, decreased temperature boost of hot water, and decreased cooling water temperature. Even though the COP increases with increased effectiveness of the components, the variation in the COP is not substantial above certain values of the effectiveness. A reference design point can be selected on this basis.

  • PDF

Experimental Investigation of Heat Transfer in Absorber with Small Diameter Tube

  • Phan Thanh Tong;Moon Choon-Geun;Kim Jae-Dol;Yoon Jung-In
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.261-262
    • /
    • 2006
  • The effect of tube diameter on heat transfer characteristics of absorber in absorption chiller/heater using LiBr solution as a working fluid has been investigated by experimental study to develop a high performance and compact absorber. A system Includes a tube absorber, a generator, solution distribution system and cooling water system was set up. The diameter of the heat exchanger tube inside absorber was changed from 15.88mm to 12.7mm and 9.52mm. The experimental results show that the heat transfer coefficient, Nusselt number and heat flux increase as solution flow rate and cooling water flow rate increase. The heat transfer performance increases as tube diameter decreases. Among three different tube diameters, the smallest tube diameter 9.52mm has highest heat transfer performance. A comparison of the heat transfer coefficient obtained by the present study with those of previous experimental results showed good overall agreement.

  • PDF

실내 설정온도에 따른 태양열 냉난방 시스템의 동적 거동 해석 (Simnlation of a Thermal Behavior in Solar Heating and Cooling System with respect to Demand Room Temperature)

  • 장환영;이상범;정경택;서정세
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3446-3451
    • /
    • 2007
  • The thermal behavior of a building in response to heat input from an active solar space heating system is analysed to determine the effect of the variable storage tank temperature on the cycling rate, on and off temperature of a heating cycle and on the comfort characteristics of room air temperature. A computer simulation of the system behavior has been performed and verified by comparisons with various parameters. Especially, this study is focused on the effect of the system's performance when subjected to dynamic cooling loads. The heat input to the absorption system is provided by an array of solar collectors that coupled to a thermal storage tank.

  • PDF

수소동위원소 저장용 ZrCo용기의 급속 냉각 성능 평가 (Rapid Cooling Performance Evaluation of a ZrCo bed for a Hydrogen Isotope Storage)

  • 이정민;박종철;구대서;정동유;윤세훈;백승우;정흥석
    • 한국수소및신에너지학회논문집
    • /
    • 제24권2호
    • /
    • pp.128-135
    • /
    • 2013
  • The nuclear fuel cycle plant is composed of various subsystems such as a fuel storage and delivery system (SDS), a tokamak exhaust processing system, a hydrogen isotope separation system, and a tritium plant analytical system. Korea is sharing in the construction of the International Thermonuclear Experimental Reactor (ITER) fuel cycle plant with the EU, Japan, and the US, and is responsible for the development and supply of the SDS. Hydrogen isotopes are the main fuel for nuclear fusion reactors. Metal hydrides offer a safe and convenient method for hydrogen isotope storage. The storage of hydrogen isotopes is carried out by absorption and desorption in a metal hydride bed. These reactions require heat removal and supply respectively. Accordingly, the rapid storage and delivery of hydrogen isotopes are enabled by a rapid cooling and heating of the metal hydride bed. In this study, we designed and manufactured a vertical-type hydrogen isotope storage bed, which is used to enhance the cooling performance. We present the experimental details of the cooling performances of the bed using various cooling parameters. We also present the modeling results to estimate the heat transport phenomena. We compared the cooling performance of the bed by testing different cooling modes, such as an isolation mode, a natural convection mode, and an outer jacket helium circulation mode. We found that helium circulation mode is the most effective which was confirmed in our model calculations. Thus we can expect a more efficient bed design by employing a forced helium circulation method for new beds.