• Title/Summary/Keyword: Absorption Cooling System

Search Result 152, Processing Time 0.024 seconds

An Experimental Study on the Performance Characteristics with Height of a Fin-Tube Liquid Desiccant Dehumidifier (휜-튜브형 액체건조제 제습기의 높이에 따른 성능특성에 관한 실험적 연구)

  • Lee, Su-Dong;Park, Moon-Soo;Chung, Jin-Eun;Choi, Young-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.594-603
    • /
    • 2004
  • Several desiccant cooling systems have been developed in terms of cost and performance. In this study a fin-tube exchanger has been used for liquid desiccant dehumidification system. This dehumidifier has been designed to study the absorption characteristic of the aqueous triethylene glycol(TEG) solution which has the flow range from 20 to 50 LPM. The dehumidifier performance characteristics of working factor variables such as inlet solution flow rate, air flow rate, solution concentration and brine temperature have been analyzed. This dehumidifier has the ability to provide running while saving the latent heat load of total energy. The result of this experiment can provide useful data for hybrid air conditioning system.

An Experimental Study on the Performance Characteristic with Height of a Fin-Tube Liquid Desiccant Dehumidifier (핀-튜브형 액체건조제 제습기의 높이에 따른 성능특성에 관한 실험적 연구)

  • Lee, Su-Dong;Park, Moon-Soo;Chung, Jin-Eun;Lee, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.25-30
    • /
    • 2003
  • Several desiccant cooling systems have been developed in terms of cost and performance. In this study a fin-tube exchanger has been used for liquid desiccant dehumidification system. This dehumidifier has been designed to study the absorption characteristic of the aqueous triethylene glycol(TEG) solution which has the flow range from 20 to 50 LPM. The dehumidifier performance characteristic of working factor variables such as inlet solution flow rate, air flow rate, solution concentration, solution temperature, brine temperature, air temperature and inlet air relative humidity has been analyzed. The result of this experiment can provide useful data for hybrid air conditioning system.

  • PDF

Heat Transfer Characteristics of Micro-encapsulated Phase Change Material Slurry (잠열 마이크로캡슐 슬러리의 열전달 특성)

  • Park, Ki-Won;Kim, Myoung-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.193-198
    • /
    • 2005
  • The present experiments have been performed for obtaining the melting heat transfer characteristics of micro-encapsulated solid-liquid phase change material and water mixed slurry flow in a circular tube heated with constant wall heat flux. The phase change material having a low melting point was selected for a domestic cooling system in the present study. The governing parameters were found to be latent heat material concentration, heat flux, and the slurry velocity. The experimental results revealed that the increase of tube wall temperature of latent microcapsule slurry was lower than that of water caused by the heat absorption of fusion.

  • PDF

Development of High Efficiency and Low Pollutant Cogeneration Hybrid System (고효율 저공해 열병합발전 하이브리드 시스템 개발)

  • Choi, Jae-Joon;Kim, Hyouck-Ju;Chung, Dae-Hun;Park, Hwa-Choon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1031-1035
    • /
    • 2008
  • The importance of the more efficient cogeneration system is emphasized. Also the more clean energy is needed at recent energy system. The cogeneration system using Lean burn engine is more preferred to the system using Rich burn engine because of the electrical efficiency. Although the cogeneration system using Lean burn engine is economically preferred, because of the NOx emission level, the system using Rich burn engine with 3-way catalyst can only be used in Korea. The NOx regulation level is 50ppm at oxygen level 13%. The cogeneration hybrid system is consist of Lean burn gas engine, afterburner, boiler, economizer, DeNOx catalyst, combustion catalyst, absorption chiller, cooling tower and grid connection system. The system was accurately evaluated and the result is following ; 90% total efficiency, below 10ppm NOx, 50ppm CO, 25ppm UHC. The cogeneration hybrid system can meet the NOx level and exhaust gas regulation. It can achieve the clean combustion gas and efficient cogeneration system.

  • PDF

An Experimental Study on Beat and Mass Transfer Characteristics of Helical Absorber (헬리컬 흡수기의 열ㆍ물질전달 특성에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Yun, Jae-Ho;Yoon, Jung-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.81-88
    • /
    • 2004
  • In this study, heat and mass transfer characteristics of five components solution (LiBr+Lil+LiNO$_3$+LiCl+$H_2O$) which could be substituted for commonly used LiBr solution are tested using a helical absorber. The arrangement of helical-typed heat exchangers allows to make the system more compact as compared to conventional one. The effects of experimental parameters, such as the solution flow rate, cooling water, solution temperature, solution concentration and surfactant have been investigated in view of the heat and mass transfer. The results of the experiment of heat and mass transfer performance show that five components solution should have 2% higher concentration fur equal absorption capacity of LiBr solution. But considering that five components solution have higher solubility than LiBr solution about 4% high concentration, five components solution could be applied to a small sized water cooled or air cooled absorption chiller/heater. The increase of heat and mass transfer coefficient by surfactant addition is about 25∼30% and 23∼40% respectively.

A Study on a Resorption Beat Pump Using Methanol-Glycerine (메탄올-글리세린을 이용한 재흡수 열펌프의 열역학적 모사 연구)

  • Min, Byong-Hun
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.284-290
    • /
    • 2006
  • The improvement of energy recovery is mandatory to decrease consumption of fossil fuels and to minimize negative impacts on the environment which originates from large cooling and heating demand. The absorption heat pump technology has a large potential for energy saving in this respect. Absorption heat pump is a means to upgrade waste heat without addition of extra thermal energy. In this study, resorption heat pump for energy recovery has been investigated using methanol-glycerine. The simulated calculation of theoretical thermal efficiency was performed based on the thermodynamic properties of the working fluid over various operating conditions. The thermal efficiency of higher than 0.4 was obtained by raising industrial waste heat, $70{\sim}80^{\circ}C$, by $40^{\circ}C$ in this system.

Salt Farm Parallel Solar Power System:Field tests and Simulations (염전 병행 태양광 발전의 실증과 시뮬레이션)

  • Park, Jongsung;Kim, Bongsuck;Gim, Geonho;Lee, Seungmin;Lim, Cheolhyun
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.121-124
    • /
    • 2019
  • In this research, the concept of a salt farm parallel solar power system, which produce salt and electricity at the same site, is proposed for the first time in the world. The concept is that large waterproof plates made by interconnected solar modules are installed at the bottom of the salt farm. The pilot system was successfully installed at a sea shore, and verified its feasibility as a solar power plant. For deeper understanding, simulations for power prediction of the system were carried out and compared with the field test results. The power generation of the salt farm parallel system is comparable to conventional solar power plants. The cooling effect by sea water contributes more to the increase in the crystalline silicon photovoltaic module performance than the absorption loss due to sea water by maintaining certain height above the module.

Study on the Performance Characteristics with the Height of a Regenerator and Dehumidifier for Liquid Desiccant Dehumidification System (액체식 제습시스템을 위한 재생기와 제습기의 높이에 따른 성능특성에 관한 연구)

  • 이수동;박문수;정진은;최영석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.630-638
    • /
    • 2004
  • Liquid desiccant dehumidification systems have the ability to provide efficient humidity and temperature control while saving the electrical energy requirement for air conditioning as compared to a conventional system. The dehumidifier and the regenerator form the heart of this system. The latent part of the cooling load is overcome using liquid desiccant. The model regenerator has been designed to study the absorption characteristic of the aqueous triethylene glycol (TEG) solution which is in the flow range from 20 to 50 LPM. Also, this system designed that was able to change the height of the regenerator and dehumidifier. Because the effect of performance have different result according the height. The effect of performance factors of the regenerator with inlet solution flow rate, air flow rate, solution concentration, solution temperature, brine temperature, air temperature and inlet air relative humidity have been analyzed. Data obtained are useful for design guidance and performance analysis of the hybrid air conditioning system.

A Study on the Optimization of District Heating and Cooling Facilities (지역냉난방사업의 설비 최적화에 관한 연구)

  • Kim, Jin Hyung;Choi, Byung Ryeal
    • Environmental and Resource Economics Review
    • /
    • v.15 no.3
    • /
    • pp.505-530
    • /
    • 2006
  • For the district heating and cooling business, it is required to install energy-saving facilities using energy from waste and land fill gases such as combined heat and power(CHP). The current issues that this business faces can be summarized as below: which facilities including CHP can be economically introduced and how much of their capacities should be. Most of such issues are clearly related to the optimal plant design of the district heating and cooling business, and the prices of energy services such as heating and cooling energy, and electricity. The purpose of this study is to establish linear program model of least cost function and to practice the empirical test on a assumed district heating and cooling business area. The model could choose the optimal type of energy-producing facilities among various kinds available such as CHP's, absorption chillers, the ice-storage system, etc. CHP with the flexible heat and power ratio is also in the set of available technologies. And the model show us the optimal ration of heat producing facilities between CHP and historical heat only boiler in the service area. Some implications of this study are summarized as below. Firms may utilize this model as a tool for the analysis of their optimal size of the facilities and operation. Also, the government may refer the results to regulate resonable size of business.

  • PDF

A Study on the Improvery Efficiency of Heavy Water Vapour for CANDU Reactor Systems (CANDU형 원자력 발전소의 중수 증기 회수율 증대 방안에 관한 연구)

  • 김윤제;박이동;황영규;이도영
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.101-112
    • /
    • 1995
  • In order to improve the recovery efficiency of heavy water vapour from the atmosphere inside a reactor building, and to recover and upgrade the heavy water which escape, special treatments, such as reducing the ingress of light water vapour, are studied in the design of the CANDU reactor systems. This is considered in controlled method of the humidity over drawing fresh air through a desiccant dehumidifier which dries the air by absorption. Comparing with the moisture loads between summer and winter operations, the moisture removal rates are calculated. Those are proportional to the difference between the controlled space and the surrounding environment Installation of a new dehumidifier will be able to reduce the moisture loads from the cooling systems, improving overall system efficiency and saving operating costs.

  • PDF