• Title/Summary/Keyword: Absorption Chiller

Search Result 148, Processing Time 0.025 seconds

A Study on Improvement of the Physical Properties of 4 Component Working Fluid in Gas Fired Absorption Chillers (가스흡수식 냉방기용 4성분계 작동매체의 물성 향상 연구)

  • Baek, Young-Soon;Oh, Young-Sam;Lee, Yong-Won;Park, Dal-Ryung;Koo, Ki-Kap
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.400-406
    • /
    • 1999
  • In an effort to obtain high efficiency in gas fired absorption chillers, a new working fluid has been developed with thc addition of the component of $LiNO_3$, LiCl and LiI to the conventional solution of $LiBr-H_2O$. The solubility and vapor pressure of the 4 component working fluid developed in this work were measured and compared to the results of $LiBr-H_2O$ solution. It was observed that there exists an optimal mole ratio of the inorganic salts in terms of solubility. The mole ratio of LiBr, $LiNO_3$ and LiCl was found to be around 5:1:1~2 in the $LiBr-LiNO_3-LiCl-H_2O$ mixture, and in the case of $LiBr-LiO_3-Lil-H_2O$ and $LiBr-Lil-LiCl-H_2O$ mixtures, the mole ratio of LiBr, $LiNO_3$ and Lil/ LiBr, LiI and LiCl were found to be around 5:1:1 and 5:1:0.5~1 respectively. The vapor pressure of the 4 component working fluid of the optimal mole ratio was increascd with adding the component of $LiNO_3$, LiCl and LiI except for $LiBr-LiNO_3-LiCl-H_2O$ mixture. The absorption capacity of $LiBr-LiNO_3-LiCl-H_2O$ mixture was obtained higher than that of $LiBr-H_2O$ mixture.

  • PDF

Study on The Supplying effect of Gas Air Conditioning Systems (가스냉방 보급효과에 대한 연구)

  • Han, J.O.;Chae, J.M.;Choi, K.S.;Hong, S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.19-25
    • /
    • 2011
  • Generally, the generation methods of cooling energy are electric air conditioning (EAC) and gas air conditioning (GAC). The EAC system is caused by increasing peak power during summer. Because the electric energy has a characteristic of non-storage, the peak electric load has been issued social problem annually whether the facility to supply is enough or not. Another way to supply cooling energy, GAC system is worked by gas energy. The absorption chiller and gas engine heat pump have been commercialized for cooling. However, the total capacity of GAC is much less than EAC and it almost depends on EAC for small market. This paper described the status of cooling energy consumption in domestic and expected the cooling energy to be consumed by electric and gas energy up to 2024 year. And also the benefit of GAC was analyzed with the case of its expansion and it was aimed to give background to fit the GAC policy.

Analysis of Performance of Heat Pump System with Flue Gas Heat Recovery through Field Test (실증운전을 통한 배가스 열회수 히트펌프 시스템의 성능 분석)

  • Lee, Seung-Ho;Lee, Gil-Bong;Lee, Young-Soo;Park, Sang-Il;Ko, Chang-Bok;Baik, Young-Jin;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • A field test of a 70 kW heat pump system with flue gas heat recovery was performed by an experiment at the Korea Institute of Energy Research. The flue gas is exhausted from a 320 RT absorption chiller-heater in the heating season. Using this flue gas, source water of the heat pump is heated by a condensed-type heat exchanger in the chimney. The operating characteristics of the heat recovery heat pump system were analyzed. Based on the results of the experiments, operating maps were obtained, and an optimum operating range is suggested, in which the return and heat source water temperature are $51^{\circ}C$ and $31^{\circ}C$, respectively. Additionally, economic analysis of this system was conducted and about 50% energy cost savings can be expected in the heating season.

Economic Estimation of Heat Storage Type Geothermal source Heat Pump System Adopted in Government office Building by a Payback Period Method (투자비회수기간법을 이용한 공공청사 적용 축열식 지열히트펌프 시스템의 경제성 평가)

  • Ko, Myung-Jin;Oh, Jung-Keun;Kim, Yong-In;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.175-182
    • /
    • 2007
  • Geothermal-energy has been getting popular as a natural energy source for green buildings these days. As a result Geothermal Source Heat Pump System (GSHPs) was being recognized effective alternative systems to conventional heating and cooling systems owing to their higher energy utilization efficiency. But GSHPs has not been popularized thereby the large amount of initial cost of the system and insufficiency of studies for economic estimation. Therefore GSHPs are being developed to make up for the weak points that are the large amount of initial cost of the system and much annual electricity consumption. In this paper, economic estimation was conducted by payback period method and it shows that the pay back period of Heat Storage Type GSHPs was calculated 6.8 years compared with the absorption Chiller-Heater system and 8.2 years compared with the Ice storage-Boiler system. Heat Storage Type GSHPs also has the lower annual source energy consumption than the conventional heating and cooling systems because of using nighttime electricity.

The Energy Performance & Economy Efficiency Evaluation of Microturbine Installed in Hospital buildings (대형병원에서 마이크로터빈 이용한 열병합시스템 에너지성능 및 경제성 분석)

  • Kim, Byung-Soo;Gil, Young-Wok;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.176-183
    • /
    • 2009
  • Distributed generation(DG) of combined cooling, heat, and power(CCHP)has been gaining momentum in recent year as efficient, secure alternative for meeting increasing energy demands. This paper presents the energy performance of microturbine CCHP system equipped with an absorption chiller by modelling it in hospital building. The orders of study were as following. 1)The list and schedule of energy consumption equipment in hospital were examined such as heating and cooling machine, light etc. 2) Annual report of energy usage and monitoring data were examined as heating, cooling, DHW, lighting, etc. 3) The weather data in 2007 was used for simulation and was arranged by meteorological office data in Daejeon. 4) Reference simulation model was built by comparison of real energy consumption and simulation result by TRNSYS and ESP-r. The energy consumption pattern of building were analyzed by simulation model and energy reduction rate were calculated over the cogeneration. As a result of this study, power generation efficiency of turbine was about 30[%] after installing micro gas turbine and lighting energy as well as total electricity consumption can be reduced by 40[%]. If electricity energy and waste heat in turbine are used, 56[%] of heating energy and 67[%] of cooling energy can be reduced respectively, and total system efficiency can be increased up to 70[%].

The waste heat utilization in container greenhouse and smart farm related technology based on IOT (컨테이너 온실에서 폐열 활용 및 IOT 기반의 스마트 팜 연계 기술)

  • Hwang, Woo-jeong;Jung, Jung-hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.415-418
    • /
    • 2017
  • Recently, the demand for energy efficiency improvement technology through the connection of waste heat energy and SmartGrid has been increasing. Thus, investments for the cultivation of high value crops and produce is increasing through research aimed at synthetic technology in real-time utilization of smart farms and waste heat energy with the concept of using container greenhouses and plant factories. In this aspect, we have carried out research on a practical application technology that will help farmers to increase the economic effectiveness of LED based plant factories in terms of energy efficiency. This can provide opportunities to connect with the large scale automated smart farms in the future. In this study, we focused on the economic effectiveness of crop cultivation using cooling technology in a container greenhouse through waste heat energy. Hereafter, in order to further advance the technology of real-time monitoring/control of the absorption chiller which is used through the container greenhouses and waste heat energy by using IOT, we would like to propose research on new ideas of agricultural technology that can maximize the utility of cooling energy by operating a mobile gateway based on Raspberry PI.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

Study of Hydrodynamics and Reaction Characteristics of K-based Solid Sorbents for CO2 Capture in a Continuous System Composed of Two Bubbling Fluidized-bed Reactors (두 개의 기포유동층으로 구성된 연속장치에서 CO2 회수를 위한 K-계열 고체흡수제의 수력학적 특성 및 반응특성)

  • Kim, Ki-Chan;Kim, Kwang-Yul;Park, Young Cheol;Jo, Sung-Ho;Ryu, Ho-Jung;Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.499-505
    • /
    • 2010
  • In this study, hydrodynamics and reaction characteristic of K-based solid sorbents for $CO_2$ capture were investigated using a continuous system composed of two bubbling fluidized-bed reactors(1.2 m tall bed with 0.11 m i.d.). Potassium-based dry sorbents manufactured by the Korea Electric Power Research Institute were used, which were composed of $K_2CO_3$ of 35% for $CO_2$ absorption and supporters of 65% for mechanical strength. The continuous system consists of two bubbling fluidized-bed reactors, solid injection nozzle, riser, chiller, analyzer and heater for regeneration reaction. The minimum fluidizing velocity of the continuous system was 0.0088 m/s and the solid circulation rate measured was $10.3kg/m^2{\cdot}s$ at 1.05 m/s velocity of the solid injection nozzle. The $CO_2$ concentration of the simulated gas was about 10 vol% in dry basis. Reaction temperature in carbonator and regenerator were maintained about $70^{\circ}C$ and $200^{\circ}C$, respectively. Differential pressures, which were maintained in carbonator and regenerator, were about $415mmH_2O$ and $350mmH_2O$, respectively. In order to find out reaction characteristics of dry sorbents, several experiments were performed according to various experimental conditions such as $H_2O$ content(7.28~19.66%) in feed gas, velocity (0.053~0.103 m/s) of simulated gas, temperature($60{\sim}80^{\circ}C$) of a carbonator, temperature($150{\sim}200^{\circ}C$) of a regenerator and solid circulation rate($7.0{\sim}10.3kg/m^2{\cdot}s$). The respective data of operating variables were saved and analyzed after maintaining one hour in a stable manner. As a result of continuous operation, $CO_2$ removal tended to increase by increasing $H_2O$ content in feed gas, temperature of a regenerator and solid circulation rate and to decrease by increasing temperature of a carbonator and gas velocity in a carbonator.