• 제목/요약/키워드: Absorption/Adsorption

검색결과 351건 처리시간 0.033초

A Chemometric Aided UV/Vis Spectroscopic Method for Kinetic Study of Additive Adsorption in Cellulose Fibers

  • Chal, Xin-Sheng;Zhou, Jinghong;Zhu, Hongxiang;Huang, Xiannan
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.1
    • /
    • pp.137-140
    • /
    • 2006
  • This paper describes a technique combining chemometrics with UV spectroscopy for the determination of the concentra tions of two tissue additives (i.e., wet strength and softening agents) in a cellulose fiber containing solution. In single as ent solutions, the concentration of the additive can be measured by UV spectroscopy at the wavelength where the species having absorption. For a binary (i.e., containing two additives) solution system, the spectral characterization is very complicated. However, if aided by a chemometrical calibration technique, each additive in the binary solution can be quantified simultaneously. The present method is very rapid and simple, it can easily perform a continuous measurement in the changes in the additives' concentration after fiber addition, and therefore this becomes a valuable tool for the adsorption kinetics study of chemical additives onto the cellulose fibers. The time-dependent adsorption behaviors of the wet-strength, softening agent, and their both on fiber were also presented.

  • PDF

Ozone Condensation and Stable Supply by an Adsorption Method

  • Yang, Seong-Ho;Park, Yong-Pil;Lee, Joon-Ung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 전자세라믹스 센서 및 박막재료 반도체재료 일렉트렛트 및 응용기술
    • /
    • pp.121-125
    • /
    • 2000
  • An ozone condenser by a selective adsorption on the silica gel surface is constructed. Ozone density is evaluated by three methods; ultraviolet absorption, thermal decomposition and Q-mass analyzing methods. Thermal decomposition method is found to be available to the density evaluation from dilute to highly condensed ozone. The highest ozone density condensed by the adsorption method is evaluated to be 97 mol%.

  • PDF

Corrosion Inhibitors For Zinc in 2 M HCI Solution

  • A. S. Fouda;L. H. Madkour;A. A. El-Shafel;S. A. Abd ElMaksoud
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권5호
    • /
    • pp.454-458
    • /
    • 1995
  • Inhibiting action of semicarbazide, thiosemicarbazide, sym. diphenylcarbazide towards corrosion of zinc in hydrochloric acid has been investigated. The rate of corrosion depends on the nature of the inhibitor and its concentration. The values of inhibition efficiency from, weight loss, thermometric measurements are in good agreement with those obtained from polarization studies. From the polarization studies, the inhibitors used act as mixed absorption type inhibitors, increased adsorption resulting from an increase in the electron density at the reactive C=S and C=O groups and N-atoms. The thermodynamic parameters of adsorption obtained using Bockris-Swinkels adsorption isotherm reveal a strong interaction of these carbazides on zinc surface.

PCB 제조공정에서 발생하는 VOC를 처리하기 위한 흡착제를 흡착특성 (Adsorption Characteristics of ACF for the Removal of VOCs in the PCB Manufacturing Process)

  • 신창섭;김기환;원정일
    • 한국대기환경학회지
    • /
    • 제17권1호
    • /
    • pp.67-74
    • /
    • 2001
  • In the manufacturing process of PCB , three kinds of VOCs such as aceton, methanol and 2-metoxyethanol are being used. In this study, adsorption characteristics of activated carbon fibers(ACFs) and active carbon were examined to temove these VOCs. The experimental results showed that ACF has better adsorption and regeneration efficiency than activated carbon. Phenolic-resin based ACF showed the highest adsorption capacity and the capacity was not decreased after repeated regeneration by steam. On the adsorption and desorption experiments for ternary components, preferential adsorption with roll-over phenomena was appeared. 2-Metoxyethanol was strong adsorbaste and it displaced adsorbed methanol and aceton.

  • PDF

활성탄에 의한 Tharonil의 흡착특성에 관한 연구 (Study on Adsorption Characteristics of Tharonil from Aqueous Solution by Activated Carbon Adsorption)

  • 이종집;유용호
    • 한국안전학회지
    • /
    • 제15권4호
    • /
    • pp.88-94
    • /
    • 2000
  • The adsorption characteristics of Tharonil on granular activated carbon were experimentally investigated in an adsorber and in a packed column. It was estabilished that the adsorption equilibrium of Tharonil on granular activated carbon was more successfully fitted by Freundlich isotherm equation than Langmuir isotherm equation in the concentration range from 1 to 1000 mg/1. Intraparticle diffusivities (pore and surface diffusivity) of Tharonil were estimated by the concentration-time curve and adsorption isotherm. The estimated values of pore diffusivity and surface diffusivity are $6.70{\times}10^{-6}$ and $2.0{\times}10^{-9}cm^2/s$, respectively. From comparison of intraparticle diffusivities, it was found that surface diffusion was the limiting step for adsorption rate. The break time and breakthrough curve predicted by constant pattern-linear driving force model were shown to agree with the experimental results.

  • PDF

PAN계 ACF의 최적 활성화 공정에 따른 흡착특성과 나노입자 첨착에 의한 SO2 흡착특성 (The Adsorption Characteristics by the Optimun Activation Process of PAN-based Carbon Fiber and SO2 Adsorption Characteristics by the Impregnated Nanoparticles)

  • 이진채;김영채
    • 공업화학
    • /
    • 제17권5호
    • /
    • pp.532-538
    • /
    • 2006
  • 탄화 및 활성화 조건을 매개체로 여러 등급의 Polyacrylonitrile (PAN)계 ACF (ACF : Activated Carbon Fiber)를 제조하여 최적의 비표면적을 나타내는 활성화 공정을 알아보았고, 가장 큰 비표면적을 갖는 PAN계 ACF에 대한 표면특성 및 독성가스 등에 대한 흡착특성을 분석하였다. 시험결과 활성화 온도가 증가할수록 비표면적이 증가하고 탄화 온도가 감소할수록 비표면적이 감소하였고, $900^{\circ}C$로 15 min간 탄화한 후 $900^{\circ}C$로 30 min간 활성화 공정을 거친 ACF가 $1204m^2/g$의 가장 높은 비표면적을 나타내었고 요오드 및 테러용 독성가스에 대한 흡착 성능시험 결과 기존의 흡착제보다 우수하였다. 또한 선택적 흡착을 위한 기능성을 부여하기 위하여 기존의 금속염을 침적하는 방법을 대체하여 비교적 안정화된 금속나노입자(Ag, Pt, Cu, Pd)를 제조하여 첨착하였고 이에 대한 표면특성 및 $SO_{2}$에 대한 흡착특성을 분석하였다. 금속나노입자 첨착 ACF에 대한 $SO_{2}$ 흡착성능 시험결과 Ag, Pt, Cu 나노입자를 첨착한 ACF는 무첨착 ACF의 파과시간(326 sec)과 비교 할 때 크게 변함이 없었으나 Pd 나노입자를 첨착한 ACF는 파과시간이 925 sec로 $SO_{2}$ 흡착성능이 매우 우수함을 알 수 있었다.

철도 노반 재료의 중금속 흡착특성과 안전성에 관한 연구 (A study on the adsorption characteristic and safety assessment of railway subsoil material)

  • 백승봉;길경익
    • 한국습지학회지
    • /
    • 제17권2호
    • /
    • pp.146-154
    • /
    • 2015
  • 국내의 철도 산업은 친환경적 지속가능한 교통으로 많은 관심을 받으며 지속적인 산업발전을 이루어왔다. 하지만 철도운영 시 발생하는 중금속 오염물질에 대한 처리 및 예방이 미흡하다. 철도 운영 시에 발생하는 중금속은 강우 시 강우유출수와 함께 흘러나온다. 특히 철도 교량의 경우 강우 시 중금속이 강우 유출수와 함께 수계로 직접 유입되어 하천 및 호소 등 오염의 원인으로 작용한다. 이러한 중금속 유출을 예방하기 위해선 철도 노반 재료의 흡착능이 중요하다. 본 연구에서는 기존에 철도 노반의 주 재료로 사용되는 자갈과 고로슬래그의 흡착능에 대하여 분석하였으며, Freundlich와 Langmuir 등온흡착식을 이용하여 고로슬래그의 흡착 특성에 대한 연구를 수행하였다. 그 결과 고로슬래그의 흡착양이 Cd와 Cu는 초기에 자갈보다 높게 나타났고, Pb와 Zn은 자갈의 흡착양이 높게 나타났다. 하지만 시간이 지남에 따라 고로슬래그의 흡착양이 기존에 철도 노반 재료로 쓰이는 자갈에 비하여 높게 나타났다. 흡착 특성은 Freundlich 등온흡착식에 비하여 Langmuir 등온흡착식에서 중금속의 결정계수가 더 높은 것으로 분석되었다. 또한 모델링을 이용하여 철도 노반 재료로서의 안전성을 평가하였다. 또한 모델링을 통해 기존 노반재료와의 안전성 비교 분석을 실시하였다. 그 결과 기존 노반재료인 자갈에 비하여 변형율이 약 10%정도 낮은 것으로 나타났다. 이는 중금속의 수계 유출을 예방 및 안전성 확보 측면에서 철도 노반 재료로 고로슬래그를 적용할 수 있을 것으로 판단된다.

Iron Mixed Ceramic Pellet for Arsenic Removal from Groundwater

  • Shafiquzzam, Md.;Hasan, Md. Mahmudul;Nakajima, Jun
    • Environmental Engineering Research
    • /
    • 제18권3호
    • /
    • pp.163-168
    • /
    • 2013
  • In this study, an innovative media, iron mixed ceramic pellet (IMCP) has been developed for arsenic (As) removal from groundwater. A porous, solid-phase IMCP (2-3 mm) was manufactured by combining clay soil, rice bran, and Fe(0) powder at $600^{\circ}C$. Both the As(III) and As(V) adsorption characteristics of IMCP were studied in several batch experiments. Structural analysis of the IMCP was conducted using X-ray absorption fine structure (XAFS) analysis to understand the mechanism of As removal. The adsorption of As was found to be dependent on pH, and exhibited strong adsorption of both As(III) and As(V) at pH 5-7. The adsorption process was described to follow a pseudo-second-order reaction, and the adsorption rate of As(V) was greater than that of As(III). The adsorption data were fit well with both Freundlich and Langmuir isotherm models. The maximum adsorption capacities of As(III) and As(V) from the Langmuir isotherm were found to be 4.0 and 4.5 mg/g, respectively. Phosphorus in the water had an adverse effect on both As(III) and As(V) adsorption. Scanning electron microscopy results revealed that iron(III) oxides/hydroxides are aggregated on the surface of IMCP. XAFS analysis showed a partial oxidation of As(III) and adsorption of As(V) onto the iron oxide in the IMCP.

음식물류 폐기물 활성탄의 제조 및 중금속 흡착특성 (Heavy Metal Adsorption Characteristics and Produced of Food Waste Activated Carbon)

  • 이준희;이승철;주민;김지혜;이돈길
    • 한국환경과학회지
    • /
    • 제24권12호
    • /
    • pp.1601-1608
    • /
    • 2015
  • This study evaluates heavy metal(Cu and Cr) adsorption characteristics produced from food waste charcoal extracted in an optimal operation condition after analyzing activated charcoal of iodine adsorption and heavy metals that derived from an activation process of carbide by the developed by-products of food waste treatment facility using the methods from previous studies. As experiment apparatus, this study used a tube-shaped high temp furnace. The mixing ratio of by-products of food waste treatment facility, carbide, and activation component($ZnCl_2$) was 1:1. The experiment was proceeded as adjusting the activation temperature from 400 to $800^{\circ}C$ and activation time from 30 to 120 minutes. The optimal activation condition for iodine absorption was 90 minutes at $700^{\circ}C$ and by using the produced food waste charcoal, this study conducted an experiment on absorption of heavy metals (Cu and Cr) as changing pH of artificial wastewater and stirring time. As a result, pH 7 showed the highest heavy metal decontamination ratio and in terms of stirring time, it revealed balance adsorption after 10 minutes. This result can be particularly applied as basic data for recyclability of high concentration organic waste, by-products of food waste treatment facility, as an food waste charcoal.

수용액 중에서 Polyamine계 유기응집제를 이용한 중금속 이온의 흡착 - 키토산의 분자량과 탈아세틸화도 - (An Investigation for the Adsorption of Heavy Metal Ions by Polyamine Organic Adsorbent from the Aqueous Solution - The Influence of Molecular Weight and Degree of Deacetylation of Chitosan -)

  • 박영미;전동원
    • 한국의류산업학회지
    • /
    • 제8권4호
    • /
    • pp.458-464
    • /
    • 2006
  • The adsorption ability of heavy metal ions from the aqueous solution by chitosan, which it is well known natural biopolymer, has been investigated. The fundamental study in this research is focusing on the physicochemical adsorption utilizing the chitosan as a organic chelating adsorbent, adsorb especially heavy metal ions from the waste liquid solution. The adsorption ability of the chitosan between metal ions, having different characteristics with Mw of 188,600, 297,200, and 504,200 g/mol and degree of deacetylation (DD) of 86.92% and 100% were investigated targeting on the $Ni^{2+}$, $Co^{2+}$, $Zn^{2+}$, and $Pb^{2+}$ ions, respectively. The uptake of heavy metal ions with chitosan was performed by atomic absorption flame emission spectrophotometer (AAS) as conducted residual metal ions. It was found that chitosan has an strong adsorption capacity for some metals under certain conditions. Chitosan, which have 100% degree of deacetylation showed high adsorption recovery ratio and have an affinity for all kinds of heavy metals. In contrast, the molecular weight of chitosan was not completely affected on metal ion adsorption.