• 제목/요약/키워드: Absorption/Adsorption

검색결과 351건 처리시간 0.02초

키틴의 염료 흡착에 의한 염액의 색소제거에 관한 연구(제1보) (Decoloration in Dyebath by Dye Absorption of Chitin(Part I))

  • 유혜자;이혜자;이전숙
    • 한국의류학회지
    • /
    • 제24권3호
    • /
    • pp.385-392
    • /
    • 2000
  • The adsorption ability of dyes on chitin, a natural polymer was investigated for decolorization of dye wastewater. Chitin was manufactured in lab by decalcification in dilute aqueous HCI solution and deproteination in dilute aqueous NaOH solution with shrimp shells. Absorbance of residue solution of dyebaths after dye adsorptions of chitin were measured in varieties of dye concentration and dipping periods. Four kinds of dyestuffs were used, C.I.Acid Blue 29. C.I.Direct Blue 6, C.I.Reactive Orange 12 and C.I.Basic Red 18. When chtin 1g was dipped in 0.05% of dyebath with stirring, maximum adsorption ratio of each kind of dyes was exhibited as 91.6% for C.I.Acid Blue 29, 95% for C.I.Direct Blue 6, 58.2% for C.I.Reactive Orange 13 and 75.8% for C.I.Basic Red 19. It shows that chitin has better adsorption abilities of ionic dyes of acid, direct and basic dye than non-ionic reactive dye. And chitin has better adsorption abilities of anionic acid direct dyes than cationic basic dye because of the presence of nitrogen atoms. All kinds of dyestuffs used showed speedy absorption effects by chitin, so chitin can absorb much amount of dyes in 5 mimutes reach to equilibrium of adsorption in 2 hours after dipping. Basic dye was absorbed the most speedily in 5 minutes, although maximum adsorption ratio is not high. That reason can be thought that chitin surface is essentially negatively charged due to polar funtional groups.

  • PDF

아민기 개질 탄소를 이용한 이산화탄소 분리 특성 (Characteristics of carbon dioxide separation using amine functionalized carbon)

  • 차왕석;임병준;김준수;이성연;박태준;장현태
    • 한국산학기술학회논문지
    • /
    • 제22권4호
    • /
    • pp.17-24
    • /
    • 2021
  • 새로운 이산화탄소 분리용 흡착제 개발은 흡착속도, 소수성, 상용 흡착제보다 낮은 재생온도 등을 고려하여야 한다. 본 연구에서는 CO2를 분리하기 위하여 아미노실란이 그라프팅된 활성탄을 합성하였다. 아민 작용기 전구체로 methyltrimethoxysilane(MTMS) and 3-Aminopropyl-triethoxysilane(APTES)을 사용하여 그라프팅하였다. APTES를 그라프팅 활성탄이 MTMS을 사용한 것보다 우수한 흡착 특성을 나타내었다. 온도 및 이산화탄소 분압에 따른 흡착 특성으로 이산화탄소 분리 메커니즘을 규명하였다. 이산화탄소의 흡수/흡착능은 25 ℃에서 아민 그라프팅 활성탄과 활성탄과 비슷하지만 아민 그라프팅 활성탄이 75 ℃에서 더 높게 나타났다. 아민 작용기 그라프팅 활성탄은 이산화탄소 분압이 1 % 인 조건에서 활성탄보다 더 우수한 흡수능을 나타내었다. 아미노실란 그라프팅 활성탄은 물리적 흡착 특성을 지닌 화학적 흡수 메카니즘을 나타내었다. 아민 작용기가 부여되어 개질된 고체상 흡수/흡착제는 이산화탄소 흡착/흡수 공정만 아닌 재료 관련 산업에 큰 영향을 미칠 수 있는 고성능 복합 재료이며, 개발된 흡착제는 흡수/흡착 및 분리 관련 산업 공정에 적용될 수 있다.

자외선 흡수제 처리에 의한 면직물의 자외선 차단 효과 (UV-Cut Effects of Cotton Fabrics Treated with UV Absorbents)

  • 지영숙;김상희
    • 한국의류학회지
    • /
    • 제18권5호
    • /
    • pp.622-627
    • /
    • 1994
  • The purpose of this study is to investigate the adsorption rate, adsorption quantities and the UV-Cut effects of cotton fabrics treated with several UV absorbents. The result of this study were as follows: cotton fabric treated with 2,2'-dihydroxy-4- methoxy-benzophenone shows more efficient than ones treated with 4-aminobenzoic acid and 2·hydroxy-1, 4-naphthoquinone in UV absorption. This may be due to the absorption of UV light by formation of intra moleculaar hydrogen bond. The formation of hydrogen bonds between hydrogen atoms of two hydroxy groups and one oxygen atom of carboxyl group in 2, 2'-dihydroxy-4-methoxy-benzophenone would be easier than that of the other absorbents. The adsorption isotherms of 4-aminobenzoic acid and 2-hydroxy-1, 4-naphthoquinone were similar to Freundlich type, while that of 2, 2'-Dihydroxy-4-methoxy-benzophenone was Henry type. Cotton fabrics treated with Antifade MC-100 and W Cut I-2 were just alike in UV absorption, but Antifade 8001 was inferior to the others.

  • PDF

치아 연마용 인산일수소칼슘의 합성 및 물리화학적 성질 (Synthesis and Physico-Chemical Properties of Dicalcium Phosphate Dihydrate for Dental Abrasive)

  • 서성수;황성주;이기명;이계주
    • 약학회지
    • /
    • 제37권1호
    • /
    • pp.66-75
    • /
    • 1993
  • Dental abrasive, dicalcium phosphate dehydrate (DCPD) was prepared and the several important factors affecting on the quality of toothpaste were investigated by means of set test, glycerine absorption, Coulter counter test, color difference, BET adsorption, mercury porosimetery, and rheogram comparing with two foreign DCPDs, MFO4 and Dentphos K. Sample DCPD was prepared by reaction between 85% H$_{3}$PO$_{4}$ and 15% milk of lime at $39^{\circ}C$ (pH6.5), and stabilized with TSPP and TMP. The physicochemical properties of Sample DCPD were obtained as follows: whiteness (98.99), average particle size (15.5 $\mu\textrm{m}$), pH (7.9), remainder particle weight (0.49w/w%), glycerine absorption value (64 ml), and set test (passed). N$_{2}$ adsorption curves (BET) of three kinds of DCPD showed non-porous type III isotherm. BET adsorption parameters of sample DCPD showed that surface area was 24.9 m$^{2}$/g, total pore volume 0.09 cm$^{3}$/g and average pore radius 72.0 $\AA$. The rheogram of the toothpaste containing each DCPD showed bulged plastic flow with yield vlaue and thixotropic behavior. These results meet standard requirements as abrasive standard, and suggested that synthesized sample DCPD could be used a dental abrasive such as a high quality grade in practice as foreign DCPDs.

  • PDF

In situ Structural Investigation of Iron Phthalocyanine Monolayer Adsorbed on Electrode Surface by X-ray Absorption Fine Structure

  • 김성현;;강광훈
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권6호
    • /
    • pp.588-594
    • /
    • 2000
  • Structural changes of an iron phthalocyanine (FePC) monolayer induced by adsorption and externally applied potential on high area carbon surface have been investigated in situ by iron K-edge X-ray absorption fine structure (XAFS) in 0.5 M $H_2S0_4.$ Fine structures shown in the X-ray absorption near edge structure (XANES) for microcrystalline FePC decreased upon adsorption and further diminished under electrochemical conditions. Fe(II)PC(-2) showed a 1s ${\rightarrow}$ 4p transition as poorly resolved shoulder to the main absorption edge rather than a distinct peak and a weak 1s ${\rightarrow}$ 3d transition. The absorption edge position measured at half maximum was shifted from 7121.8 eV for Fe(lI)PC(-2) to 7124.8 eV for $[Fe(III)PC(-2)]^+$ as well as the 1s ${\rightarrow}$ 3d pre-edge peak being slightly enhanced. However, essentially no absorption edge shift was observed by the 1-electron reduction of Fe(Il)PC(-2), indicating that the species formed is $[Fe(II)PC(-3)]^-$. Structural parameters were obtained by analyzing extended X-ray absorption fine structure (EXAFS) oscillations with theoretical phases and amplitudes calculated from FEFF 6.01 using multiple-scattering theory. When applied to the powder FePC, the average iron-to-phthalocyanine nitrogen distance, d(Fe-$N_p$) and the coordination number were found to be 1.933 $\AA$ and 3.2, respectively, and these values are the same, within experimental error, as those reported ( $1.927\AA$ and 4). Virtually no structural changes were found upon adsorption except for the increased Debye-Wailer factor of $0.005\AA^2$ from $0.003\AA^2.$ Oxidation of Fe(II)PC(-2) to $[Fe(III)PC(-2)]^+$ yielded an increased d(Fe-Np) (1 $.98\AA)$ and Debye-Wailer factor $(0.005\AA^2).$ The formation of $[Fe(II)PC(-3)]^-$, however, produced a shorter d(Fe-$N_p$) of $1.91\AA$ the same as that of crystalline FePC within experimental error, and about the same DebyeWaller $factor(0.006\AA^2)$.

흡수 분광법을 이용한 세정 과정에서 흡착된 오일의 평가 (A Method to Determine Amount of Adsorbed Oil in Hair Washing Using Absorption Spectroscopy)

  • 송상훈;김현영;손성길
    • 대한화장품학회지
    • /
    • 제45권2호
    • /
    • pp.105-116
    • /
    • 2019
  • 두발이나 인체 세정 과정에서 일어나는 오일 흡착은 내부 성분량 변화와 컨디셔닝 기능에 큰 영향을 준다. 본 연구에서는 오일을 흡착재에서 직접 검출하여 편리하게오일량을 정량할 수 있는 흡수 분광 평가법을 개발하였다. 먼저, 오일 흡착량에 영향을 미치는 코아세르베이트 함량을 판단하기 위해서 음이온과 양쪽성 계면 활성제간 몰비율에 따른 코아세르베이트 함량을 조사하였다. 이 데이터를 활용하여 오일 흡착량 평가에 가장 적합한 오일 점도값을 확보하였고 세정제의 계면활성제간 몰비 조정 등을 통해 모발 대체 흡착재와 흡착 및 용출에 필요한 가장 최적의 방법을 확립하였다. 이렇게 확립한 평가법으로 자외선 흡광도가 있는 오일을 자외선 흡광도가 없는 실리콘 같은 오일 대신 배합해서 흡착시키고 용출시킨 후 흡수 분광법으로 오일 흡착량을 정량 계산해 본 결과를 HPLC의 질량분석과 AFM을 이용한 점착력 결과와 비교하였다. 오일 흡착에 영향을 미치는 요인인 양이온 폴리머를 다르게 하고 복합 폴리머를 사용해 본 결과 본 평가법이 모든 오일의 흡착량 평가에 적용할 수 있음을 입증하였다.

Utilization of Sapwood Waste of Fast-Growing Teak in Activated Carbon Production and Its Adsorption Properties

  • Johanes Pramana Gentur SUTAPA;Ganis LUKMANDARU;Sigit SUNARTA;Rini PUJIARTI;Denny IRAWATI;Rizki ARISANDI;Riska DWIYANNA;Robertus Danu PRIYAMBODO
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권2호
    • /
    • pp.118-133
    • /
    • 2024
  • The sapwood portion of fast-growing teak is mostly ignored due to its inferior quality. One of the possibilities for utilizing sapwood waste is to convert it into activated carbon that has good adsorption capabilities. The raw materials used in this research were sapwood of 14-year-old fast-growing teak sapwood (FTS) waste, which was taken from three trees from community forests in Wonosari, Gunungkidul, Yogyakarta Special Region. FTS waste was taken from the bottom of the tree up to a height of 1.3 m. The activation process is conducted with an activation temperature of 750℃, 850℃, and 950℃. The heating duration consists of three variations: 30 min, 60 min, and 90 min. The quality evaluation parameters of activated carbon include yield, moisture content, volatile matter content, ash content, fixed carbon content, adsorption capacity of benzene, adsorption capacity of methylene blue, and adsorption capacity of iodine. The results showed that the activated carbon produced had the following quality parameters: yield of 75.61%; moisture content of 1.27%; volatile matter content of 9.98%; ash content of 5.43%; fixed carbon content of 84.58%; benzene absorption capacity of 8.58%; methylene blue absorption capacity of 87.73 mg/g; and iodine adsorption capacity of 948.19 mg/g. It can be concluded that activated carbon from FTS waste has good iodine adsorption, which fulfilled the SNI 06-3730-1995 quality standard. Due to the iodine adsorption ability of FTS waste activated carbon, the conversion of FTS waste to activated carbon is categorized as a potential method to increase the value of this material.

실리카겔을 이용한 흡착식 담수화 시스템 개발 (Development of Adsorption Desalination System Utilizing Silica-gel)

  • 현준호;;이윤준;천원기
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.364-369
    • /
    • 2012
  • The development of solar thermal energy used adsorption desalination technology have been examined as a viable option for supplying clean energy. In this study, the modelling of the main devices for solar thermal energy used and adsorption desalination system was introduced. Silica gel type adsorption desalination system is considered to be a promising low-temperature heat utilization system. The design is divided into three parts. First, the evaporator for the vaporization of the tap water is designed, and then the reactor for the adsorption and release of the steam is designed, followed by the condenser for the condensation of the fresh water is designed. In addition, new features based on the energy balance are also included to design absorption desalination system. In this basic research, One-bed(reactor) adsorption desalination plant that employ a low-temperature solar thermal energy was proposed and experimentally studied. The specific water yield is measured experimentally with respect to the time controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times. Desalination is processes that permeate our daily lives, but It requires substantial energy input, powered either from electricity or from thermal input. From the environmental and sustainability perspecives, innovative thermodynamic cycles are needed to produce the above-mentioned useful effects at a lower specific energy input. This article describes the development of adsorption cycles for the production of desalting effects. We want that this adsorption system can be driven by low temperature heat sources at 60 to $80^{\circ}C$, such as renewable, solar thermal energy.

  • PDF

표면 처리 방법에 따른 타이타늄의 미세 표면 거칠기, 표면 젖음성, fibronectin 흡착량에 미치는 영향 (EFFECTS OF VARIOUS SURFACE TREATMENTS FOR TITANIUM ON SURFACE MICRO ROUGHNESS, STATIC WETTABILITY, FIBRONECTIN ADSORPTION)

  • 신화섭;김영수;신상완
    • 대한치과보철학회지
    • /
    • 제44권4호
    • /
    • pp.443-454
    • /
    • 2006
  • Purpose: This study aims to get the fundamental data which is necessary to the development direction of implant surface treatment hereafter, based on the understanding the surface structure and properties of titanium which is suitable for the absorption of initial tissue fluid by researching effects of additional surface treatments fir sandblasted with large git and acid-etched(SLA) titanium on surface micro-roughness, static wettability, fibronectin adsorption Materials and Method: In the Control groups, the commercial pure titanium disks which is 10mm in diameter and 2mm in thickness were treated with HCI after sandblasting with 50$\mu$m $Al_2O_3$. The experiment groups were made an experiment each by being treated with 1) 22.5% nitric acid according to SLA+ASTM F86 protocol, 2) SLA+30% peroxide, 3) SLA+NaOH, 4) SLA+ Oxalic acid, and 5) SLA+600$^{\circ}C$ heating. In each group, the value of Ra and RMS which are the gauges of surface roughness was measured, surface wettability was measured by analyzing with Sessile drop method, and fibronectin adsorption was measured with immunological assay. The significance of each group was verified by (SPSS, ver.10.0 SPSS Inc.) Kruskal-Wallis Test. (α=0.05) And the correlation significance between Surface micro-roughness and surface wettability. surface roughness and fibronectin adsorption, and surface wettability and fibronectin adsorption was tested by Spearman's correlation analysis. Result: All measure groups showed the significant differences in surface micro-roughness, surface wettability, and fibronectin adsorption. (p<0.05) There was no significance in correlation among the surface micro-roughness, surface wettability, and fibronectin adsorption. (p>0.05) Conclusion: Surface micro-roughness and surface wettability rarely affected the absorption of initial tissue fluid on the surface of titanium.

관엽식물의 생리적 반응 차이에 의한 대기오염물질 $(O_3, SO_2, O_3+SO_2)$의 흡수능 비교 (Comparison of Absorption Ability by Difference of Physiological Response in Three Foliage Plants Exposed to $O_3 and SO_2$ SIngly and in Combination)

  • 박소홍;이영이;배공영;이용범
    • 한국대기환경학회지
    • /
    • 제14권1호
    • /
    • pp.35-42
    • /
    • 1998
  • We compared absorption and adsorption rates of air pollutants by plants to eveluate the difference of absorption capacity of plant species and kinds of air pollutants, when foilage plants were exposed to $O_3$ and $SO_2$ singly and combiningly. Absorption and adsorption rates of three foliage plants exposed to $O_3$ and $SO_2$ singly and in combination varied a little according to plant species and kinds of air pollutants. But total absorption rate of Spathiphyllum patinii and Ficus benjamina was higher, and it was lower in Pachira aquatica. When exposed to $O_3$ and $SO_2$ at the same concentration, Pachira aquatica absorbed more $O_3$ than $SO_2$, in contrast to Ficus benjamina absorbing more $SO_2$. On the other hand, Spathiphyllum patinii absorbed as much $O_3$ as $SO_2$. Physiological activities were measured since absorption rates were affected by physiological characteristics of plants. Spathiphyllum patinii and Ficus benjamina showed higher photosynthetic and transpiration rates, and Pachira aquatica showed lower values. And diffusive and stomatal resistences of Pachira aquatica were higher than those of two other species. These results showed that absorption capacity was affected by the differences of physiological characteristics. Absorption capacity of air pollutants increased in plants, such as Spathiphyllum patinii and Ficus benjamina, which had high $SO_2$ absorption rate. We found that plants showing high $CO_2$ absorption rates absorb a lot of air pollutnats.

  • PDF