• Title/Summary/Keyword: Absorption/Adsorption

Search Result 351, Processing Time 0.023 seconds

Adsorption of molecular oxygen and $SO_2$ on Ni(100)

  • Hyunsukl Jeong;Changmin;Kim, Eunha;Hojun Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.180-180
    • /
    • 1999
  • The interaction of oxygen with a Ni(100) surface has been investigated using X-ray Photoelectron Spectroscopy (XPS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) technique. Below 200L oxygen exposure, molecular oxygen was dissociated to atomic oxygen. Increasing oxygen exposure, -1s binding energy shifted from 531.0 eV to 533.0 eV due to molecular adsorption. The presence of molecular oxygen species was confirmed by NEXAFS. Molecular oxygen adsorbed on Ni(100) was oriented perpendicular to the surface. Upon heating over 150K molecular adsorbed oxygen surface was also analyzed using NEEXFS.

  • PDF

Chemisorption and orientation of Selenopheneon Si(100)-$2{\times}1$

  • Lee, Han-Koo;Kim, Ki-Jeong;Kim, Hyeong-Do;Shin, Hyun-Joon;Kim, Bong-Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.372-372
    • /
    • 2010
  • We have investigated adsorption of selenophene on Si(100) at room temperature using high resolution photoemission spectroscopy (HRPES) and near edge X-ray absorption fine structure (NEXAFS) in the partial electron yield (PEY) mode. The Si 2p, C 1s, Se 3d spectra of selenophene on Si(100) show that selenophene is nondissociatively chemisorbed on Si(100)-$2{\times}1$ through [2+2] cycloaddition. NEXAFS has been conducted to characterize the adsorption geometry of selenophene on Si(100). Since the $\pi^*$ orbital of C=C bond show good angular dependence in carbon K-edge NEXAFS spectra, the angle $53{\pm}5^{\circ}$ determined from NEXAFS spectra. This majority structure is consistent with the [2+2] cycloaddition of selenophene to the dimer of the Si(100)-$2{\times}1$ surface.

  • PDF

Phosphate Adsorption-Desorption of Kaolinite KGa-2 (Source Clay) (카올리나이트 KGa-2 (표준 점토)의 인산염 흡착-탈착 특성)

  • Cho, Hyen-Goo;Choi, Jae-Ho;Moon, Dong-Hyuk;Kim, Soo-Oh;Do, Jin-Youn
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.117-127
    • /
    • 2008
  • The characteristics of phosphate adsorption-desorption on kaolinite was studied by batch adsorption experiments and detailed adsorbed state of phosphate on kaolinite surface was investigated using ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) spectroscopy. The phosphorous contents were measured using UV-VIS-IR spectrophotometer with 820 nm wavelength. The adsorbed P was generally increased with increasing pH value in the range of pH 4 to pH 9, however it is not distinct. Moreover the adsorbed P was significantly changed with different initial phosphate concentration. The adsorption isotherms were well fitted with the Langmuir equation, Temkin equation, and Freundlich equation in descending order. The maximum Langmuir adsorption capacity of kaolinite KGa-2 is 232.5 ($204.1{\sim}256.5$) mg/kg and has very higher value than that of kaolinite KGa-1b. Most of adsorbed phosphate on kaolinite were not easily desorbed to aqueous solution, but might fixed on kaolinite surface. However it needs further research about the exact desorption experiment. It was impossible to recognize phosphorous adsorption bands on kaolinite in ATR-FTIR spectrum from kaolinite bands themselves, because the absorption peaks of phosphorous have very similar positions with those of kaolinite, and the intensities of the former were very weak in comparison with those of the latter.

Effects of pH and Temperature on the Adsorption of Cationic Dyes from Aqueous Suspension by Maghnia Montmorillonite (수용액으로부터 양이온 염료 흡수에 대한 pH 및 온도 효과)

  • Elaziouti, A.;Laouedj, N.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.208-217
    • /
    • 2011
  • The effects of pH and temperature on the removal of two dyes (neutral red; NR and malachite green oxalates; MG) from aqueous effluents using Maghnia montmorillonite clay in a batch adsorption process were investigated. The results showed the stability of the optical properties of MG in aqueous solution and adsorbed onto clay under wide range of pH 3-9. However, the interaction of NR dye with clay is accompanied by a red shift of the main absorption bands of monomer cations under pH range of 3-5, whereas, those of neutral form remains nearly constant over the pH range of 8-12. The optimal pH for favorable adsorption of the dyes, i.e. ${\geq}$90% has been achieved in aqueous solutions at 6 and 7 for NR and VM respectively. The most suitable adsorption temperatures were 298 and 318 K with maximum adsorption capacities of 465.13mg/g for NR and 459.89 mg/g for MG. The adsorption equilibrium results for both dyes follow Langmuir, Freundlich isotherms. The numerical values of the mean free energy $E_a$ of 4.472-5.559 kj/mol and 2.000-2.886 kj/mol for NR and MG respectively indicated physical adsorption. Various thermodynamic parameters, such as ${\Delta}H^{\circ}$, ${\Delta}S^{\circ}$, ${\Delta}G^{\circ}$ and Ea have been calculated. The data showed that the adsorption process is spontaneous and endothermic. The sticking probability model was further used to assess the potential feasibility of the clay mineral as an alternative adsorbent for organic ion pollutants in aqueous solution.

Adsorption Characteristic of Brownish Dark Colored Compounds from the Hot Water Extract of Auricularia auricula Fruit Body (흑목이 버섯 자실체의 열수추출물로부터 흑갈색 색소 성분의 흡착 특성)

  • Kim, Hyeon-Min;Hur, Won;Lim, Kun Bin;Lee, Shin-Young
    • Food Engineering Progress
    • /
    • v.13 no.2
    • /
    • pp.138-146
    • /
    • 2009
  • The crude polysaccharide fraction from fruit body of Auricularia auricula were obtained by using hot water extraction and ethanol precipitation. As the crude polysaccharide fraction contained the brownish dark colored compounds, the adsorption study of pigments from the crude polysaccharide using activated carbon was carried out. The pigment compounds showed an absorption characteristic with $\lambda_{max}$ of 230 nm and the absorbance at 230 nm was taken as color intensity. Adsorption capacity of pigment depended on increase of the activated carbon to sample loading ratio. The adsorption capacity increased with increase of pH and temperature in the pH range of 3.0-7.0 and temperature range of 25-40$^{\circ}C$, but decreased in the temperature range of 40-70$^{\circ}C$. The optimum capacity was obtained at addition of 16.7 mg activated carbon per mL sample solution (concentration = 3 mg/mL) at pH of 7.0 and temperature of 40$^{\circ}C$. Treatment for 10 min was sufficient to achieve the 80% decolorization and 1.25 fold purification of polysaccharide. Langmuir isotherm and pseudo second-order kinetic model provided the best fitting for adsorption of the brownish dark colored compounds onto powdered active carbon. The activation energies of adsorption from the Langmuir isotherm parameter in the ranges of 25-40$^{\circ}C$ and 40-70$^{\circ}C$ was -2.54 and 4.38 kcal/g, respectively. The results of low activation energy also indicated that the adsorption process was a physical adsorption which was controlled by diffnsion.

Absorption Characteristics of Soybean curd Powder by Drying Methods (건조방법에 따른 건조분말두부의 흡습특성)

  • Kim Jin-Sung;Kim Jun-Han;Ha Young-Sun
    • Food Science and Preservation
    • /
    • v.12 no.1
    • /
    • pp.54-61
    • /
    • 2005
  • The absorption characteristics and their physical properties of hot air, vacuum and freeze dried soybean curd powder were investigated. Absorption conditions were at 5, 15, and 25 t with $0.11\~0.93$ water activities. Equilibrium moisture content and the monolayer moisture content determined by prediction models showed highest value in the freeze dried soybean curd powder due to porous structure. Absorption energy decreased with increasing water activity was not affected by drying method. In the comparisons of the isothermal absorption models, Oswin model generally was the best fit model for isothermal adsorption of soybean curd powder.

Analysis of Ozone Concentration by TD and Q-mass Method

  • Lee, Dong-Gyu;Lee, Joon-Ung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.161-165
    • /
    • 2004
  • In order to get oxidizing power enough for growth of a superconductive thin film with oxide gas, concentrated ozone was used. As a method for concentrating ozone, a method for concentrating ozone by adsorbing ozone selectively into silica-gel beads is adopted, and this concentration is analyzed by the ultraviolet absorption method, the thermal decomposition method and the Q-mass analyzing method. Thermal decomposition method is most effective for measurement of a high concentration of ozone. Ozone as concentrated by the adsorption method got to have a concentration of 97 mol % at the maximum, and it was identified that the concentration of the ozone gas was stable for the time while a thin film was formed.

Sorbent Extraction of Some Metal Ions on a Gas Chromatographic Stationary Phase Prior to Their Flame Atomic Absorption Determinations

  • Soylak, M.;Saracoglu, S.;Elci, L.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.555-558
    • /
    • 2003
  • An enrichment/separation system for atomic absorption spectrometric determinations of Cu(Ⅱ), Fe(Ⅲ), Ni(Ⅱ) and Co(Ⅱ) has been established. The procedure is based on the adsorption of the analytes as calmagite chelates on Chromosorb-102. The effects of some parameters including pH, amount of ligand, salt matrix, flow rates of sample and eluent solutions were investigated. Under optimized conditions, the relative standard deviation of the combined method of sample treatment, preconcentration and determination with FAAS (N=5) is generally lower than 5%. The limit of detection (3σ) was between 6.0-112.9 ㎍/L. The results were used for preconcentration of analytes from some sodium and ammonium salt.

Preparation of Hybrid Materials with Zeolite and Metal Hydride, and Their Hydrogen Absorbing Properties (금속수소화물과 제올라이트의 혼성화물제조 및 수소화반응)

  • Eun, Won-Pyo;Lee, Kong-Hee;Bae, Jang-Son;Park, Chan-Kyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.2
    • /
    • pp.146-154
    • /
    • 2003
  • The hybrids of zeolite and metal hydride were prepared to improve the absorption properties as media for hydrogen storage. The zeolites which was deposited on the surface by metal hydride vapor showed excellent absorption properties and sodalite was proved to be better than zeolite-A in the reaction velocity and hydrogen storage capacity. This suggests the metal hydride could be used effectively as catalytic active material for enhancing the hydrogen storage in zeolite containing $\alpha$-cages and furthermore the hydrogen molecules have preference tobe occluded in their cavities containing $\alpha$-cages more effectively than that containing a and $\beta$-cages.

Effect of KOH Concentrations and Pyrolysis Temperatures for Enhancing NH4-N Adsorption Capacity of Rice Hull Activated Biochar (KOH 농도 및 탄화온도가 왕겨 활성 바이오차의 NH4-N 흡착능 향상에 미치는 영향)

  • Kim, HuiSeon;Yun, Seok-In;An, NanHee;Shin, JoungDu
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.171-177
    • /
    • 2020
  • BACKGROUND: Recently, biomass conversion from agricultural wastes to carbon-rich materials such as biochar has been recognized as a promising option to maintain or increase soil productivity, reduce nutrient losses, and mitigate greenhouse gas emissions from the agro-ecosystem. This experiment was conducted to select an optimum conditions for enhancing the NH4-N adsorption capacity of rice hull activated biochar. METHODS AND RESULTS: For deciding the proper molarity of KOH for enhancing its porosity, biochars treated with different molarity of KOH (0, 1, 2, 4, 6, 8) were carbonized at 600℃ in the reactor. The maximum adsorption capacity was 1.464 mg g-1, and an optimum molarity was selected to be 6 M KOH. For the effect of adsorption capacity to different carbonized temperatures, 6 M KOH-treated biochar was carbonized at 600℃ and 800℃ under the pyrolysis system. The result has shown that the maximum adsorption capacity was 1.76 mg g-1 in the rice hull activated biochar treated with 6 M KOH at 600℃ of pyrolysis temperature, while its non-treated biochar was 1.17 mg g-1. The adsorption rate in the rice hull activated biochar treated with 6 M KOH at 600℃ was increased at 62.18% compared to that of the control. Adsorption of NH4-N in the rice hull activated biochar was well suited for the Langmuir model because it was observed that dimensionless constant (RL) was 0.97 and 0.66 at 600℃ and 800℃ of pyrolysis temperatures, respectively. The maximum adsorption amount (qm) and the bond strength constants (b) were 0.092 mg g-1 and 0.001 mg L-1, respectively, for the rice hull activated biochar treated with 6 M KOH at 600℃ of pyrolysis. CONCLUSION: Optimum condition of rice hull activated biochar was 6M KOH at 600℃ of pyrolysis temperature.