• Title/Summary/Keyword: Absorbing capacity

Search Result 155, Processing Time 0.023 seconds

Drop Impact Analysis of Outside Cooling Unit Package of System Air-Conditioner and Experimental Verification (시스템 에어컨 실외기 포장품의 낙하충격해석 및 시험적 검증)

  • Kim, Hyung-Seok;Lee, Boo-Yoon;Lee, Sanghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.111-116
    • /
    • 2018
  • This research examines the drop impact of an external cooling unit package of an air conditioner system. The packaging is composed of a shock-absorbing material, which protects the package contents by absorbing the impact energy and other parts for fixture. Accurate quantification of the impact acceleration experienced by the package contents is necessary to design an effective packaging with minimal volume and sufficient shock absorbing capacity. Explicit time integration was used for the drop impact analyses. A finite element model of the package was constructed, material testing and material model selection were carried out, and sensors for data acquisition were modeled to obtain accurate simulation results. The results were compared with real physical test data. Due to imprecise modeling of the damping, the acceleration and strain values predicted by the simulation were larger than those from physical test. However, the trend of the history data and the peak deceleration value in the direction of impact showed good agreements. Thus, the analysis model and scheme are suitable for the design of an air conditioner cooling unit package.

Physicochemical Characteristics and Carbon Dioxide Absorption Capacities of Alkali-activated Blast-furnace Slag Paste (알칼리 활성화된 고로슬래그 페이스트의 물리화학적 특성 및 이산화탄소 흡수능 평가)

  • Ahn, Hae Young;Park, Cheol Woo;Park, Hee Mun;Song, Ji Hyeon
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • PURPOSES: In this study, alkali-activated blast-furnace slag (AABFS) was investigated to determine its capacity to absorb carbon dioxide and to demonstrate the feasibility of its use as an alternative to ordinary Portland cement (OPC). In addition, this study was performed to evaluate the influence of the alkali-activator concentration on the absorption capacity and physicochemical characteristics. METHODS: To determine the characteristics of the AABFS as a function of the activator concentration, blast-furnace slag was activated by using calcium hydroxide at mass ratios ranging from 6 to 24%. The AABFS pastes were used to evaluate the carbon dioxide absorption capacity and rate, while the OPC paste was tested under the same conditions for comparison. The changes in the surface morphology and chemical composition before and after the carbon dioxide absorption were analyzed by using SEM and XRF. RESULTS: At an activator concentration of 24%, the AABFS absorbed approximately 42g of carbon dioxide per mass of paste. Meanwhile, the amount of carbon dioxide absorbed onto the OPC was minimal at the same activator concentration, indicating that the AABFS actively absorbed carbon dioxide as a result of the carbonation reaction on its surface. However, the carbon dioxide absorption capacity and rate decreased as the activator concentration increased, because a high concentration of the activator promoted a hydration reaction and formed a dense internal structure, which was confirmed by SEM analysis. The results of the XRF analyses showed that the CaO ratio increased after the carbon dioxide absorption. CONCLUSIONS : The experimental results confirmed that the AABFS was capable of absorbing large amounts of carbon dioxide, suggesting that it can be used as a dry absorbent for carbon capture and sequestration and as a feasible alternative to OPC. In the formation of AABFS, the activator concentration affected the hydration reaction and changed the surface and internal structure, resulting in changes to the carbon dioxide absorption capacity and rate. Accordingly, the activator ratio should be carefully selected to enhance not only the carbon capture capacity but also the physicochemical characteristics of the geopolymer.

The Impact of Air Temperature During the Growing Season on NEE of the Apple Orchard (사과 생육기의 기온이 사과원의 NEE에 미치는 영향)

  • Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Choi, Eun-Jung;Ryu, Jong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1211-1215
    • /
    • 2012
  • Terrestrial ecosystem are a strong sink of carbon. Forest ecosystem, one of them, has been expected to play an important role in climate changing process by absorbing atmospheric carbon dioxide. On the other hand, agricultural ecosystem that consists mainly of annual crops is regarded as poor contributor to carbon accumulation, because its production (carbon hydrate) is decomposed into carbon at a short period, which is emitted to the atmosphere. However, it is thought that fruit tree plays a great role in decreasing atmospheric carbon dioxide concentration, same as forest. Net ecosystem exchange of $CO_2$ (NEE) was measured to estimate carbon fixation capacity using an eddy covariance (EC) system method in 2 years from 2005 to 2006 at an apple orchard in Uiseong, Gyeongbuk. Average air temperature values were higher in 2006 than in 2005 during the dormant season, and lower by about $5^{\circ}C$ over the growing season causing visible cold injuries. Accordingly, we investigated long-term exchange of carbon to determine how much difference of carbon fixation capacity was shown between 2006 and 2005 in terms of environmental and plant variables such as NEE, leaf area index (LAI), and Albedo. NEE was $4.8Mg\;C\;ha^{-1}yr^{-1}$ in 2005 and $4.7Mg\;C\;ha^{-1}yr^{-1}$ in 2006, respectively. Low temperature after July in 2006 decreased LAI values faster than those in 2005. Meanwhile, Albedo values were higher after July in 2006 than in 2005. These results show that the low temperature after July in 2006 apparently affected apple growth.

The Energy Absorption Control Characteristics of Al Thin-walled Tubes for Crashworthiness Enhancement (충돌성능 향상을 위한 Al 박육부재의 에너지흡수 제어특성)

  • Yang, Yong-Jun;Kim, Sun-Kyu;Yang, In-Young;Sim, Jae-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.81-87
    • /
    • 2008
  • In this study, concerns the crashworthiness of the widely used vehicle structure, square thin-walled tubes, which are excellent on the point of the energy absorbing capacity. An experimental investigation was carried out to study the energy absorption characteristics of thin-walled square tubes subjected to dynamic crushing by axial loading to develop the optimum structural members. The impact velocity was tested in the rage $4.698{\sim}8.2m/s$. To efficiently review the collapse characteristics of these sections, the simulation have been carried out using explicit FEM package, LS-DYNA. The solutions compared with results the impact collapse experiment. Here, the controller are introduced to improve and control the absorbed energy of thin-walled square tubes in this paper. To predict and control the energy absorption, we designed it in consideration to the it's influence, height, thickness, wide ratio in this study. When the controller used, the experimental results of crushing of square tubes controlled by the controller's elements showed a good candidate for a controllable energy absorption capability in impact axial crushing.

Analysis of Relationship between Capacity of Knowledge Absorption and Knowledge Network (지식 흡수 능력과 지식 네트워크와의 관계에 대한 연구)

  • Lee, Su-Jin;Koo, Young-duk;Jeong, Dae-hyun
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.1-8
    • /
    • 2017
  • Knowledge network is considered to be an important factor in securing regional economic performance and competitiveness. In addition, research institutes that are capable of absorbing knowledge tend to form a global knowledge network regardless of geographical factors, and those that are not, are heavily influenced by regional factors. In this study, we examined how much influence of geographical factors of knowledge network is influenced by lower knowledge absorptive capacity in Korea. As a result, it was shown that the higher institutes of knowledge absorption, the more international collaborative research is being carried out. In other words, a region where science and technology has developed means that regional factors are no longer important factors. The results of this study correspond with the discussion of the preceding theories. In addition, it is worthy of study in that the precedent study was carried out in the case study in Korea.

Comparison of Moisture Absorption/Desorption Properties of Carbonized Boards Made from Wood-Based Panels (목질판상재로 제조된 탄화보드의 흡방습 성능 비교)

  • Lee, Min;Park, Sang-Bum;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.424-429
    • /
    • 2016
  • In this study, the carbonized boards were manufactured from different types of wood-based panel and then their moisture absorption/desorption properties were investigated and compared. The carbonization temperature was maximum $600^{\circ}C$ with 2 h maintains. Test results showed higher absorption/desorption capacity on carbonized plywood than carbonized MDF, PB, and OSB, respectively. However, carbonized MDF, OSB, and plywood had similar absorption/desorption rate per hour. It means carbonized OSB and plywood can transfer moisture into deeper side and then possibly hold more amount of water. Based on SEM images, carbonized OSB and plywood showed more like wood structure, while carbonized MDF and PB had only wood fiber or/and chunk of wood fragments. Therefore, original wood structure may affect moisture absorption/desorption capacity. In order to manufacture high moisture absorbing/desorbing carbonized board, wood structure should be considered and then carbonized.

Prediction of GHP Performance Using Cycle Analysis (사이클 해석을 통한 GHP 성능 예측)

  • Cha, Woo Ho;Choi, Song;Chung, Baik Young;Kim, Byung Soon;Jeon, Si Moon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In this paper a prediction method of GHP performance is proposed for increasing design accuracy. Two compressors with different capacity and 2311cc gas engine are used for prediction and the target capacity of GHP is 25HP. For predicting GHP performance at first the operation points are randomly selected and then as compared with compressor performance date and heat exchanger characteristic, more accurate operating points are decided through recursive calculation. Lastly engine performance date is used for calculating gas consumption volume. Predicting heating mode performance of GHP, evaporator is separated to the two section of absorbing heat in outdoor air and in engine. From the experimental results, it was found that the simulation model is good for the predicting GHP efficiency and the difference of predicted and measured efficiency is less than 5%.

The Solution of Severe Vibration Problen of the Secondary Cooling Pump in HANARO (하나로 2차 냉각펌프의 고진동 해소방안)

  • Park, Yong-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.26-31
    • /
    • 2002
  • The heat produced by the fission in the fuel of HANARO, 30 MW of research reactor, was transferred from the primary cooling water to the secondary cooling water through heat exchangers. The secondary cooling water absorbing the heat was circulated by secondary cooling pumps and cooled through 33 MW of cooling tower. Each capacity of the three secondary cooling pumps was fifty percent ($50\%$) of full load. The two pumps were normally operated and the other pump was standby. One of the secondary cooling pumps has often made troubles by high vibration. To release these troubles the pump shaft has been re-aligned, the pump bearing has been replaced with new one, the shaft sleeve has been replaced with new one, the shaft and the impeller have been re-balanced representatively and/or the vibration of motor has been tested by disconnecting the shaft of pump. But the high vibration of pump cannot be cleared. We find out the weight balance trouble of the assembly in which the impeller is installed in the shaft. After clearing the trouble, the high vibration is relieved and the pump is operated smoothly. In this paper, the trouble solution shooting method of secondary cooling pump is described including the reason of high vibration

Electrochemical Properties of Hydrogen Absorbing Ability Ti1-XZrxVNi Ti1-XZrxV0.5Ni1.5 Alloys (Ti1-XZrxVNi 및 Ti1-XZrxV0.5Ni1.5계 수소저장합금의 전기화학적 성질)

  • Cho, Tae-Hwan;Park, Chan-Kyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.2 no.1
    • /
    • pp.15-21
    • /
    • 1990
  • Nickel-hydrogen battery systems with metal hydride alloys are expected to have both higher energy density and lower pollution than nickel-cadmium cells. Nickel-hydrogen storage cells are expected to be well-suited for use in space crafts for a large capacity power storage system. Their major advantages are not only a capability of deep DOD(depth of discharge) using but also with excellent durability under excessive overcharging and overdischarging. In this study, the charge/discharge capacities, anodic polarization characteristics and durability for the continious charge/diacharge cycling of the $Ti_{1-X}Zr_XVNi$ and $Ti_{1-X}Zr_XV_{0.5}Ni_{1.5}$ alloys were measured by electrochemical method. The electrode properties of the copper or nickel plated $Ti_{1-X}Zr_XV_{0.5}Ni_{1.5}$ alloys were examined with a battery charge/discharge testing system in the temperature range of -5 to $25^{\circ}C$.

  • PDF

Collapse Characteristics on Width Ratio and Flange Spot-Weld Pitch for Hat-Shaped Members (모자형 단면부재의 폭비와 플랜지 용접간격에 따른 압궤특성)

  • Cha, Cheon-Seok;Gang, Jong-Yeop;Kim, Yeong-Nam;Kim, Jeong-Ho;Kim, Seon-Gyu;Yang, In-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.98-105
    • /
    • 2001
  • The fundamental and widely used spot welded sections of automobiles (hat and double hat-shaped section members) absorb most of the energy in a front-end collision. The sections were tested on axial static(10mm/min) and quasi-static(1000mm/min) loads. Based on these test results, specimens with various thickness, shape and spot weld pitch on the flange have been tested with impact velocity(7.19m/sec) the same as a real life car clash. Characteristics of collapse have been reviewed and a structure of optimal energy absorbing capacity is suggested.