• Title/Summary/Keyword: Absorbed dose distribution

Search Result 106, Processing Time 0.018 seconds

Absorption and Distribution for Subtoxic Level of Selenite by Vascularly Perfused Small Intestine in Rats (랫드의 소장-혈관의 이중 관류를 통한 저독성 농도의 selenite 흡수와 분포)

  • Park, Yeong-Chul;Yoon, Mi-Sook;Kim, Jong-Bong
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.169-175
    • /
    • 2010
  • Intestinally absorptive and distributive aspects of the subtoxic level of selenite in rats were investigated using a double perfusion system. The double-perfusion technique is an in situ, in vitro preparation in which the intestinal lumen and its vasculature are perfused simultaneously. In the previous study, the subtoxic level of sodium selenite was determined to be 1.2 mM through inhibition of 3-0-methyl glucose (3MG) absorption. Thus, the selenite used to identify the intestinally absorptive mechanism of selenite was perfused at a luminal concentration of 1, 10, 50, 100 and $200\;{\mu}M$. Appearance of radiolabeled-Selenium (Se) was identified in three compartments: luminal perfusate, small intestine and vascular perfusate. Dose-response curves for Se in the three compartments indicate that selenite is absorbed by non-mediated passive diffusion. Regarding the distributive aspect, $21.02{\pm}3.92%$ of the total amount of selenite in the lumen was transported into the blood vessels across the small intestine. However, $4.75{\pm}1.75%$ of the total amount of selenite in the lumen is retained by the small intestine. Therefore, a total of $25.67{\pm}4.46%$ of the test dose was taken up from the luminal perfusate.

Pharmacokinetics of Arsenic Hexaoxide, a Anticancer Compound, in Rats (흰쥐에서 항암성화합물인 육산화비소의 체내동태)

  • Lee, Pung-Sok;Shin, Dae-Hwan;Lee, So-Young;Lee, Jung-Yeol;Lee, Kyoung-Mi;Kwon, Koo-Hyun;Chung, Youn-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.6
    • /
    • pp.377-383
    • /
    • 2006
  • The purpose of the present study was to examine the pharmacokinetic characteristics of arsenic hexaoxide($As_4O_6$), a novel anticancer compound, after i.v. bolus and oral administration in rats. We developed an ICP-Mass based method to analyze arsenic hexaoxide levels in plasma, bile, urine, feces, and tissue and validated the method. Arsenic hexaoxide rapidly disappeared from the plasma by 10 min($\alpha$ phase) after i.v. administration, which was followed by the late disappearance in the $\beta$ phase. The mean plasma half-lives($t_{1/2}$) of arsenic hexaoxide at the a and $\beta$ phase when administered at a dose of 5 mg/kg were 1.57 and 29.8 min, respectively. The maximum plasma concentration($C_{max}$) was 230 ng/mL, after oral administration of arsenic hexaoxide at a dose of 50 mg/kg. The bioavailability, which was calculated from the dose-adjusted ratio, of the oral administered arsenic hexaoxide was 1.61%. Of the various tissues tested, arsenic hexaoxide was mainly distributed in the spleen, lung, liver and kidney after oral administration. Arsenic hexaoxide levels in the spleen or lung at 24 hr after oral administration were higher than those of maximum plasma concentration($C_{max}$). The cumulative amounts of arsenic hexaoxide found in the urine by 48 hr after the administration of 50 mg/kg were 5-fold higher than those in the bile. However, the cumulative amounts in the feces were 10-fold higher compared with those of urine, suggesting that arsenic hexaoxide is mostly excreted in the feces. In conclusion, our observations indicated that arsenic hexaoxide was poorly absorbed from the gastro-intestinal tract to the blood circulation and transferred to tissues such as the spleen and lung at 24 hr after oral administration. Moreover, the majority of arsenic hexaoxide appears to be excreted in the feces by 48 hr after oral administration.

In Vivo Metabolic studies on Carbofuran Degradation in carp(Cyprinus carpio L.) (Carbofuran 의 잉어(Cyprinus carpio)체내 대사)

  • Lee, Yang-Kee;Kim, In-Seon;Im, Keon-Jae;Suh, Yong-Tack
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.25-30
    • /
    • 1997
  • Absorption, distribution, metabolism and excretion of $^{14}C-carbofuran$(2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamte) were studied in carp(Cyprinus carpio L.) after the treatment of carbofuran at the dose level of 43 parts per billion. Maximum radioactivities in tissues(liver, kidney, gut, gall bladder) and blood of carp were shown 12hrs after the treatment of $^{14}C-carbofuran$. Carbofuran was metabolized to 3-hydroxycarbofuran and 3-ketocarbofuran in liver and kindney of carp, and the major metabolite was 3-hydroxycarbofuran. Most radioactivity absorbed into the carp tissues was eliminated 3hrs after transfer of the carp to fresh water. The excretory metabolites were 3-ketocarbofuran(32.3%), 3-hydroxycarbofuran(52.8%) and an unknown metabolite(2.6%) during the period of 3hrs of the excretory experiment.

  • PDF

Pharmacokinetic studies on ADME of G009

  • Deuk, Han-Man;Hoon Jeong;Lee, June-Woo;Kim, Su-Ung;Lee, Seung-Yong;Song, Jae-Jin;Chung, Sung-Kyun;Kim, Kee-Nam;Back, Seong-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.108-108
    • /
    • 1995
  • Pharmacokinetic studies on time-course of blood levels, tissue distribution, and excretion of G009, a potential hepatoprotective agent, were performed in male rats after a single oral dose(20mg/kg) of $\^$14/C-labelled G009. The radioactivity concentrations in plasma during 0~3 hours are low, but subsequently increase to a maximum at 12 hours after dosing. $\^$14/C-G009 was well distributed to all tissue. Tissue concentration profiles of radioactivity vary among tissues on time-course after administration. G009(single oral dosage) was distributed and/or absorbed at gastric intestines and excretional organs for initial time of 0-7 hours, and distributed to most tissue at 12-24 hours. In special, the concentration of radioactivity in tiller at 48 hours were 1% of total radioactivity of $\^$14/C-G009 administered. The expired air, urinary and fecal excretion of radioactivity within 24hours after administration were 61.5%, 1.9% and 21.2% of total radioactivity of $\^$14/C-G009 administered. The biliary excretion of radioactivity in rat increased slightly for 0-6 hours after administration. The biliary excretion of radioactivity within 48hours were 1.97%.

  • PDF

Report on the External Audits Conducted by Korean Society of Medical Physics (한국의학물리학회 선형가속기 외부 품질관리 실시 현황보고)

  • Huh, Hyun Do;Cho, Kwang Hwan;Cho, Sam Ju;Choi, Sang Hyoun;Kim, Dong Wook;Hwang, Ui-Jung;Kim, Ki Hwan;Min, Chul Kee;Choi, Tae Jin;Oh, Young Kee;Lee, Seoung Jun;Park, Dahl;Park, Sung-Kwang;Ji, Young Hoon
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.315-322
    • /
    • 2013
  • The aim of this work is to verify the self-quality assurances in medical institutions in Korea through the external audits by the group of experts and have a mutual discussion of the systematic problems. In order to validate the external audits 30 of 80 medical institutions across the nation were picked out considering the regional distribution and the final 25 institutions applied voluntarily to take part in this work. The basic rules were setup that any information of the participants be kept secrete and the measurements be performed with the dosimetry system already verified through intercomparision. The outputs for 2 or more photon beams, the accuracy of gantry rotation and collimator rotation and the poistional accuracy of MLC movement were measured. The findings for the output measurement showed the differences of -0.8%~4.5%, -0.79%~3.01%, and -0.7%~0.07% with respect to that of the verified dosimetry system for the 6MV, 10MV, and 15MV, respectively. For the reference absorbed dose 8 (16%) of 50 photon beams in 25 medical institutions differed 2.0% or greater from the reference value. The coincidences of Field size with x-ray beam and radiation isocenters of Gantry roration and collimator rotation gave the results of within ${\pm}2$ mm for every institute except 2 institutions. The positional accuracy of MLC movement agreed to within ${\pm}1$ mm for every institute. For the beam qualities of 6 MV photon beams kQ values showed the distribution within 0.4% between maximum and minimum. For the protocols 21 institutions (84%) used absorbed dose to water based protocol while 4 insitutions (16%) used air kerma based one. 22 institutions employed the SSD technique while 3 institutions did the SAD one. External audit plays an important role in discovering the systematic problems of self-performing Quality Assurances and having in depth discussion for mutual complementation. Training experts of international level as well as national support system are required so that both the group of experts of medical physicists and government laboratory could perform together periodical and constant external audits.

Air Cavity Effects on the Absorbed Dose for 4-, 6- and 10-MV X-ray Beams : Larynx Model (4-, 6-, 10-MV X-선원에서 공기동이 흡수선량에 미치는 효과 : 후두모형)

  • Kim Chang-Seon;Yang Dae-Sik;Kim Chul-Yong;Choi Myung-Sun
    • Radiation Oncology Journal
    • /
    • v.15 no.4
    • /
    • pp.393-402
    • /
    • 1997
  • Purpose : When an x-ray beam of small field size is irradiated to target area containing an air cavity, such as larynx, the underdosing effect is observed in the region near the interfaces of air and soft tissue. With a larynx model, air cavity embedded in tissue-equivalent material, this study is intonded for examining Parameters, such as beam quality, field size, and cavity size, to affect the dose distribution near the air cavity. Materials and Methods : Three x-rar beams, 4-, 6- and 10-MV, were employed to Perform a measurement using a 2cm $(width){\times}L$ (length in cm, one side of x-ray field used 2cm (height) air cavity in the simulated larynx. A thin window parallel-plate chamber connected to an electrometer was used for a dosimetry system. A ratio of the dose at various distances from the cavity-tissue interface to the dose at the same points in a homogeneous Phantom (ebservedlexpected ratio, O/E) normalized buildup curves, and ratio of distal surface dose to dose at the maximum buildup depth were examined for various field sizes. Measurement for cavity size effect was performed by varying the height (Z) of the air cavity with the width kept constant for several field sizes. Results : No underdosing effect for 4-MV beam for fields larger than $5cm\times5cm$ was found For both 6- and 10-MV beams, the underdosing portion of the larynx at the distal surface was seen to occur for small fields, $4cm\times4cm\;and\;5cm\times5cm$. The underdosed tissue was increased in its volume with beam energy even for similar surface doses. The relative distal surface dose to maximum dose was changed to 0.99 from 0.95, 0.92, and 0.91 for 4-, 6-, and 10-MV, respectively, with increasing field size, $4cm\times4cm\;to\;8cm\times8cm$, For 6- and 10-MV beams, the dose at the surface of the cavity is measured less than the predicted by about two and three percent. respectively. but decrease was found for 4-MV beam for $5cm\times5cm$ field. For the $4cm\timesL\timesZ$ (height in cm). varying depth from 0.0 to 4.8cm, cavity, O/E> 1.0 was observed regardless of the cavity size for any field larger than about $8cm\times8cm$. Conclusion : The magnitude of underdosing depends on beam energy, field size. and cavity size for the larynx model. Based on the result of the study. caution must be used when a small field of a high quality x-ray beam is irradiated to regions including air cavities. and especially the region where the tumor extends to the surface. Low quality beam. such as. 4-MV x-ray, and larger fields can be used preferably to reduce the risk of underdosing, local failure. In the case of high quality beams such as 6- and 10-MV x-rays, however. an additional boost field is recommended to add for the compensation of the underdosing region when a typically used treatment field. $8cm\times8cm$, is employed.

  • PDF