• Title/Summary/Keyword: Absorbed dose

Search Result 569, Processing Time 0.033 seconds

A study of Quality evaluation for medical linear accelerator using Electronic Portal Imaging (전자포탈영상 (EPI)을 이용한 의료용 선형가속기의 성능평가에 관한 연구)

  • 윤성익;권수일;추성실
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.105-113
    • /
    • 1998
  • Accurate radiation dosimetric characters is very important to determine of dose to a radiotherapeutic patient. Medical linear accelerators have been developed not only its new quality of convenient operation but also electric moderation. It is reliable to measure more detail physical parameter that linac's internal ability. Typically, radiation dosimetric tool is classified ionization chamber, film, thermoluminescence dosimeter, etc. Nowaday, Electronic Portal Imaging Device is smeared in radiation field to verification of treatment region. EPID's image was focused that using both on-line image verification and absolutely minimum absorbed dose during radiotherapy. So, Electronic Portal Imaging was tested for quality evaluation of medical linear accelerator had its pure conditional flash. This study has performed symmetry, Light/Radiation field congruence, and energy check, geometry difference on wedge filter using a liquid filled ion chamber (EPID). Prior to irradiated on EPID, high energy photon beam is checked with ion chamber. Using these results more convenient dosimetric method is accomplished by EPID that taken digital image. Medical image is acquired with EPID too. Therefore, EPID can be analyzed by numerical information for what want to see or get more knowledge for natural human condition.

  • PDF

Performance Analysis of Low-level Radiation Shielding Sheet with Diamagnetic Nanoparticles

  • Cho, Jae-Hwan;Kim, Myung-Sam
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • In this study, the authors attempted to produce a medical radiation shielding fiber that can be produced at a nanosize scale and that is, unlike lead, harmless to the human body. The performance of the proposed medical radiation shielding fiber was then evaluated. First, diamagnetic bismuth oxide, an element which, among elements that have a high atomic number and density, is harmless to the human body, was selected as the shielding material. Next, 10-100 nm sized nanoparticles in powder form were prepared by ball milling the bismuth oxide ($Bi_2O_3$), the average particle size of which is $1-500{\mu}m$, for approximately 10 minutes. The manufactured bismuth oxide was formed into a colloidal solution, and the radiation shielding fabric was fabricated by curing after coating the solution on one side or both sides of the fabric. The thicknesses of the shielding sheets prepared with bismuth oxide were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 1.0 mm. An experimental method was used to measure the absorbed dose and irradiation dose by using the lead equivalent test method of X-ray protection goods presented by Korean Industrial Standards; the resultant shielding rate was then calculated. From the results of this study, the X-ray shielding effect of the shielding sheet with 0.1 mm thickness was about 55.37% against 50 keV X-ray, and the X-ray shielding effect in the case of 1.0 mm thickness showed shielding characteristics of about 99.36% against 50 keV X-ray. In conclusion, it is considered that nanosized-bismuth radiation shielding fiber developed in this research will contribute to reducing the effects of primary X-ray and secondary X-ray such as when using a scattering beam at a low level exposure.

Nasal Absorption of Procyclidine in Rats and Dogs

  • Jang, Eun-Ju;Lee, Young-Joo;Chung, Suk-Jae;Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.24 no.3
    • /
    • pp.219-223
    • /
    • 2001
  • Nasal absorption of procyclidine, a synthetic anticholinergic compound, was investigated in Wistar rats and Beagle dogs. The dosing solution was prepared by dissolving$^{14}C$-procyclidme in 50% ethanolic saline. The dosing solution was administered intravenously and intranasally to rats at a dose of 0.6 mg/kg (i.e., $60{\mu}$l/kg in the form of a 1% w/v solution), and intravenously, orally and intranasally to doss at a dose of 0.3 mg/kg(i.e., $6{mu}$l/kg in the form of a 5% w/v solution). Blood samples were taken from an artery of the animals through the catheter for periods of 1200 (for rats) and 1440 min (for dogs), and the radioactivity in the samples was determined by liquid scintillation counting. The nasal bioavailability of Procyclidine in rats and dogs, based on the radioactivity was calculated to be 81.1 and 98.6% respectively. In both rats and dogs, the plasma profiles of procyclidine following nasal administration were very close to those following intravenous administration, leading to nearly superimposable profiles between the two protocols. In dogs, nasal administration resulted in significantly higher plasma concentrations during the first 30 min period compared to oral administration, suggesting the superiority of the nasal route over the oral route in terms of a prompt expression of the pharmacological effect of the drug. The results obtained in this study indicate that procyclidine is rapidly and nearly completely absorbed via the nasal route. In conclusion, nasal administration represents a viable alternative to intravenous administration in the case of procyclidine.

  • PDF

The Radiation Exposure of Radiographer Related to the Location in C-arm Fluoroscopy-guided Pain Interventions

  • Chang, Young Jae;Kim, Ah Na;Oh, In Su;Woo, Nam Sik;Kim, Hae Kyoung;Kim, Jae Hun
    • The Korean Journal of Pain
    • /
    • v.27 no.2
    • /
    • pp.162-167
    • /
    • 2014
  • Background: Although a physician may be the nearest to the radiation source during C-arm fluoroscope-guided interventions, the radiographer is also near the fluoroscope. We prospectively investigated the radiation exposure of radiographers relative to their location. Methods: The effective dose (ED) was measured with a digital dosimeter on the radiographers' left chest and the side of the table. We observed the location of the radiographers in each procedure related to the mobile support structure of the fluoroscope (Groups A, M and P). Data about age, height, weight, sex, exposure time, radiation absorbed dose (RAD), and the ED at the radiographer's chest and the side of the table was collected. Results: There were 51 cases for Group A, 116 cases for Group M and 144 cases for Group P. No significant differences were noted in the demographic data such as age, height, weight, and male to female ratio, and exposure time, RAD and ED at the side of the table. Group P had the lowest ED ($0.5{\pm}0.8{\mu}Sv$) of all the groups (Group A, $1.6{\pm}2.3{\mu}Sv$; Group M, $1.3{\pm}1.9{\mu}Sv$; P < 0.001). The ED ratio (ED on the radiographer's chest/ED at the side of the table) of Group A was the highest, and the ED radio of Group P was the lowest of all the groups (Group A, $12.2{\pm}21.5%$; Group M, $5.7{\pm}6.5%$; Group P, $2.5{\pm}6.7%$; P < 0.001). Conclusions: Radiographers can easily reduce their radiation exposure by changing their position. Two steps behind the mobile support structure can effectively decrease the exposure of radiographers by about 80%.

Gamma-ray Dosimetry with Thin Plastic Film

  • Yoo, Young-Soo;Ro, Seung-Gy
    • Nuclear Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.223-233
    • /
    • 1973
  • Thirty two different kinds of domestic plastic films for use in measuring high gamma-ray dose have been collected and their dosimetric characteristics investigated with the help of a Co-60 gamma radiation source. Among them a rigid polyvinyl chloride(PVC) film of 0.06mm in thickness which is manufactured by Lucky Chemical Co., Korea, seem to be the most suitable one for this purpose. The relation between optical density at 3100$\AA$ and radiation exposure in this PVC film was linear in the range of 0.6$\times$10$^{6}$ R to 1.3$\times$10$^{7}$ R, and also the film showed a good reproducibility within 9% under the standard experimental condition. The effect of absorbed dose, oxygen content of surrounding atmosphere and irradiation temperature have also been studied for this film. It appeared to have a good property in the dosimetrical point of view.

  • PDF

Radiation Dose during Transmission Measurement in Whole Body PET/CT Scan (전신 PET/CT 영상 획득 시 투과 스캔에서의 방사선 선량)

  • Son Hye-Kyung;Lee Sang-Hoon;Nam So-Ra;Kim Hee-Joung
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.89-95
    • /
    • 2006
  • The purpose of this study was to evaluate the radiation doses during CT transmission scan by changing tube voltage and tube current, and to estimate the radiation dose during our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan. Radiation doses were evaluated for Philips GEMINI 16 slices PET/CT system. Radiation dose was measured with standard CTDI head and body phantoms in a variety of CT tube voltage and tube current. A pencil ionization chamber with an active length of 100 mm and electrometer were used for radiation dose measurement. The measurement is carried out at the free-in-air, at the center, and at the periphery. The averaged absorbed dose was calculated by the weighted CTDI ($CTDI_w=1/3CTDI_{100,c}+2/3CTDI_{100,p}$) and then equivalent dose were calculated with $CTDI_w$. Specific organ dose was measured with our clinical whole body $^{137}Cs$ transmission scan and high quality CT scan using Alderson phantom and TLDs. The TLDs used for measurements were selected for an accuracy of ${\pm}5%$ and calibrated in 10 MeV X-ray radiation field. The organ or tissue was selected by the recommendations of ICRP 60. The radiation dose during CT scan is affected by the tube voltage and the tube current. The effective dose for $^{137}Cs$ transmission scan and high qualify CT scan are 0.14 mSv and 29.49 mSv, respectively. Radiation dose during transmission scan in the PET/CT system can measure using CTDI phantom with ionization chamber and anthropomorphic phantom with TLDs. further study need to be peformed to find optimal PET/CT acquisition protocols for reducing the patient exposure with same image qualify.

  • PDF

The Study for Radio Protection According to a Possible Danger of Exposure During dental X-ray Examination (치과 방사선 검사 시 노출 위험성에 따른 피폭선량 방어연구)

  • Lim, Cheong-Hwan;Kim, Seung-Chul;Jung, Hong-Ryang;Hong, Dong-Hee;You, In-Gyu;Jeong, Cheon-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.5
    • /
    • pp.237-244
    • /
    • 2011
  • Generally, X-ray examinations for dentistry use low energy radiation. It explains that the radiations are mainly absorbed to a human body because of the weak permeability. We made up some counterplans for decrease in radiation exposure, when guardians and radiologists are overexposed owing to unavoidable circumstances. The equipments for the test are GX-770 and CRANEX TOME CEPH which are used for various exams. Besides we measured the radiations in the projection room and in the control room using model 2026c and 20X6-1800. According to the test, the measurement value in the control room was low dose below $20{\mu}R$, the maximum dose in the projection room was $702.8{\mu}R$ and the measurement value of back dose was higher than lateral one. As the result, if we use a shielding door, it's effective for radioprotection and when we didn't prepare protectors, we should secure appropriate distance and be situated at the side area($90{\sim}135^{\circ}$) on the basis of centeral radiation. That way will provide valuable aid for radioprotection.

Image Evaluation for A Kind of Patient Fixing Pad in 64 Multi-Channel Detector Computed Tomograph (64 다중채널 검출기 전산화단층촬영에서 환자고정자 재질에 대한 영상평가)

  • Kim, Kee-Bok;Goo, Eun-Hoe
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.1
    • /
    • pp.89-95
    • /
    • 2016
  • The purpose of this experiment intend to evaluate the quality of the image based on the orbit and basal ganglia with high radiosensitivity for the noise, SNR and dose using the five kinds patient fixing pad in brain phantom MDCT(BrillianceTM CT 64 slice, PHILIPS, Netherward). The noise had a higher values in AP than those of others, but the SNR was lower in AP than those of others. The SNR was higher in UP than those of RP, PP, SP and AP. The UP, RP and PP were no statistically significant(p>0.05), whereas it was significant difference between UP, RP, PP and SP, AP(p<0.05). This is causes of the noise difference is generated due to the differences in the radiation absorption dose in accordance with each the component of the absorbed dose level of the detector according to the reference line and each of SOML when the radiation exposured. The CTDIvol(mGy) and DLP of orbit and basal ganglia were 56.95, 911.50, respectively. There is no difference between both mean dose. In conclusion, it is possible to distinguish among a kind of 5 patient fixing pad by using brain phantom MDCT. Overall, patient fixing pad of UP, RP and PP based on a brain phantom MDCT can provide useful information.

The Direct Dissolution of Ion-Exchange Resin by Fenton's Reagent (펜톤시약을 이용한 이온교환수지의 직접분해)

  • Kim, Kil-Jeong;Shon, Jong-Sik;Ryu, Woo-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.85-90
    • /
    • 2007
  • Fenton's Reagent is applied to directly dissolve the cation-exchange resin, IRN-77. The characteristics of the experimental procedure is to dry the resin first and $FeSO_4$ solution is completely absorbed into the resin, and then $H_2O_2$ is introduced later for an effective reaction between the reagents within the resin. An a characteristic of the dissolution, the lag time is needed for about 1 hour until the main reaction is occurred, which was more affected with the less concentration of $FeSO_4$ and the less initial dose of $H_2O_2$. The dose of $H_2O_2$ was equally divided into the early stage and the later stage after the initial reaction to provide an effective and safe reaction condition. The optimum conditions is appeared that the concentration of $FeSO_4$ is 0.9M and the dose of 15% $H_2O_2$ solution is 6-7 volume for the dissolution of unit weight of IRN-77. The effect of the heating on the lag time was checked and the time could be reduced within 5 minutes at $50^{\circ}C$, which is a relatively low temperature. The large amount of the resin, 5g and 10g, was also completely decomposed by increasing the dose of $H_2O_2$ to 9-10 volume ratio.

  • PDF

A Study on Barium Mixed Radiation Shield using 3D Printer (3D 프린터를 이용한 바륨혼합형 차폐체에 대한 연구)

  • Gang, Heon-Hyo;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.627-634
    • /
    • 2020
  • Instead of lead, we intend to develop shielding materials for morphological implementation by mixing barium sulfate, an eco-friendly substance, and PLA filament, a 3D printer material. The environmental substance, barium sulfate powder and PLA filament, a 3D printer material, were used, and the shielding was made with a 3D printer after being fused into an extruder to mix the powder powder of barium sulfate with PLA. To check the mixing ratio of barium sulfate powder and PLA filament, the mixing input was analyzed, and the absorption dose by thickness according to barium sulfate content was obtained to check the shielding function of the mixed shielding. In the evaluation of the mixture of sulfate barium powder particles and PLA filaments, it was mixed in the most appropriate proportion when the content was 30% in the apparent and electron microscopic observation photographs. In the absorption dose results by thickness according to barium sulfate content, the difference between the content of 0% and the content of each % was greatest at 0.5 cm in thickness and the lowest dose value at 3 cm in thickness when the barium content was 30%. In addition, as the barium content began to increase at 30%, the absorbed dose value increased again. Instead of conventional lead, barium sulfate, an eco-friendly substance, could be mixed with PLA, a filament material, to create morphological shielding. Based on this study, it is expected that the mixing ratio of barium to the mixture is the most appropriate 30%, and will be used as the basis for the implementation of morphological shielding using 3D printers in the diagnosis and treatment section.