• Title/Summary/Keyword: Absorbed dose

Search Result 571, Processing Time 0.023 seconds

Change of PET Image According to CT Exposure Conditions (CT 촬영 조건에 따른 PET 영상의 변화)

  • Park, Jae-Yoon;Kim, Jung-hoon;Lee, Yong-Ki
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.473-479
    • /
    • 2019
  • PET-CT improves performance and reduces the time by combining PET and CT of spatial resolution, and uses CT scan for attenuation correction. This study analyzed PET image evaluation. The condition of the tube voltage and current of CT will be changed using. Uniformity phantom and resolution phantom were injected with 37 MBq $^{18}F$ (fluorine ; 511 keV, half life - 109.7 min), respectively. PET-CT (Biograph, siemens, US) was used to perform emission scan (30 min) and penetration scan. And then the collected image data were reconstructed in OSEM-3D. The same ROI was set on the image data with a analyzer (Vinci 2.54, Germany) and profile was used to analyze and compare spatial resolution and image quality through FWHM and SI. Analyzing profile with pre-defined ROI in each phantom, PET image was not influenced by the change of tube voltage or exposure dose. However, CT image was influenced by tube voltage, but not by exposure dose. When tube voltage was fixed and exposure dose changed, exposure dose changed too, increasing dose value. When exposure dose was fixed at 150 mA and tube voltage was varied, the result was 10.56, 24.6 and 35.61 mGy in each variables (in resolution phantom). In this study, attenuation image showed no significant difference when exposure dose was changed. However, when exposure dose increased, the amount of dose that patient absorbed increased too, which indicates that CT exposure dose should be decreased to minimum to lower the exposure dose that patient absorbs. Therefore future study needs to discuss the conditions that could minimize exposure dose that gets absorbed by patient during PET-CT scan.

Effect of Additives on the Radiation-Induced Grafting of Styrene onto Polypropylene Fabric (폴리프로필렌 부직포에 스틸렌의 방사선 그라프트 반응에서 첨가제의 영향)

  • Park, Jong Shin;Nho, Young Chang;Jin, Joon-Ha;Lee, Myun Zu
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.938-945
    • /
    • 1996
  • The present studies are to describe the grafting reaction of styrene in various solvents to polypropylene fabric by the simultaneous method using Co-60. The influence of various factors such as absorbed dose, dose rate, type of solvent, acid and multifunctional monomer were evaluated. At constant absorbed dose, the grafting yield was found to be higher at low dose rate. The initial rate of grafting was found to be proportional to a 0.56 power of dose rate. The inclusion of mineral acid in the grafting solution led to an increase in radiation grafting yield at almost all monomer concentration examined. Multifunctional monomer was also effective to increase grafting yield. The addition of both acid and multifunctional monomer was found to accelerate the grafting yield much more than the separate addition of two additives.

  • PDF

Evaluating the Reduction of Spatial Scattering based on Lead-free Radiation Shielding Sheet using MCNPX Simulation (MCNPX 시뮬레이션을 이용한 무납 방사선 차폐 시트 기반의 공간산란 저감화 평가)

  • Yang, Seung u;Park, Geum-byeol;Heo, Ye Ji;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.367-373
    • /
    • 2020
  • Most of the spatial scattered dose caused by the scattered rays generated by the collision between the object and X-rays is relatively easily absorbed by the human body as electromagnetic waves in the low energy region, thereby increasing the degree of radiation exposure. Such spatial scattering dose is also used as an indicator of the degree of radiation exposure of radiation workers and patients, and there is a need for a method to reduce exposure by reducing the spatial scattered dose that occurs indirectly. Therefore, in this study, a lead-free radiation shielding sheet was proposed as a way to reduce the spatial scattering dose, and a Monte Carlo (MC) simulation was performed based on a chest X-ray examination. The absorbed dose was calculated and the measured value and the shielding rate were compared and evaluated.

RADIATION DOSE TO HUMAN AND NON-HUMAN BIOTA IN THE REPUBLIC OF KOREA RESULTING FROM THE FUKUSHIMA NUCLEAR ACCIDENT

  • Keum, Dong-Kwon;Jun, In;Lim, Kwang-Muk;Choi, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • This paper describes the radiation doses to human and non-human biota in the Republic of Korea, as a result of the Fukushima nuclear accident. By using the measured airborne activity and ground deposition, the effective and thyroid doses of five human age groups (infant, 5 years, 10 years, 15 years and adult) were estimated by the ECOSYS code, and the whole body absorbed dose rate of the eight Korean reference animals and plants (RAPs) was estimated by the K-BIOTA (the Korean computer code to assess the risk of radioactivity to wildlife). The first-year effective and thyroid human doses ranged from 5.7E-5 mSv in the infant group to 2.0E-4 mSv in the 5 years group, and from 5.0E-4 mSv in the infant group to 3.4E-3 mSv in the 5 years group, respectively. The life-time (70 years) effective and thyroid human doses ranged from 1.5E-4 mSv in the infant group to 3.0E-4 mSv in the 5 years group, and from 6.0E-4 mSv in the infant group to 3.5E-3 mSv in the 5 years group, respectively. The estimated maximum whole body absorbed dose rate to the Korean RAPs was 6.7E-7 mGy/d for a snake living in soil (terrestrial biota), and 2.0E-5 mGy/d for freshwater fish (aquatic biota), both of which were far less than the generic dose criteria to protect biota from ionizing radiation. Also, the screening level assessment for ERICA's (Environmental Risks from Ionizing Contaminants: Assessments and management) limiting organisms showed that the risk quotient (RQ) for the estimated maximum soil and water activity was significantly less than unity for both the terrestrial and freshwater organisms. Conclusively, the radiological risk of the radioactivity released into the environment by the Fukushima nuclear accident to the public and the non-human biota in the republic of Korea is considered negligible.

Decomposition of Acetylsalicylic Acid by Gamma Ray (감마선 조사에 의한 Acetylsalicylic Acid의 분해)

  • Ahn, Young Deok;Lee, Kyoung-hwon;Lee, O Mi;Kim, Tae-Hun;Jung, In ha;Yu, SeungHo;Lee, Myun-Joo
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.253-258
    • /
    • 2011
  • Acetylsalicylic acid (ASA) has been issued recently in contaminated water environments because of potential impacts on ecosystem and public health. This study was aimed at investigating the possibility of ASA degradation using gamma ray irradiation. In addition, the use of sodium persulfate, hydrogen peroxide, ferrous sulfate were tested in order to examine a synergistic effect with gamma ray. The absorbed dose was ranged from 0.2 to 10 kGy and the concentration of oxidants were from 0.1 to 10 mM in this study. The concentration of ASA was gradually decreased corresponding to the increase of the absorbed dose. When soudium persulfate was simultaneously applied, most of the parent compound was completely degraded even at a low dose of 0.8 kGy. The removal efficiency of total organic carbon was 90% even at the highest dose of 10 kGy without sodium persulfate. However, the efficiency was dramatically enhanced up to 98% at the same dose by adding 10 mM of oxidants. It was suggested that hydroxyl radical ($OH{\cdot}$) and sulfate radical ($SO{_4}^-{\cdot}$) were formed in the system and made roles in degrading ASA at the same time.

Organ dose conversion coefficients in CT scans for Korean adult males and females

  • Lee, Choonsik;Won, Tristan;Yeom, Yeon Soo;Griffin, Keith;Lee, Choonik;Kim, Kwang Pyo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.681-688
    • /
    • 2022
  • Dose monitoring in CT patients requires accurate dose estimation but most of the CT dose calculation tools are based on Caucasian computational phantoms. We established a library of organ dose conversion coefficients for Korean adults by using four Korean adult male and two female voxel phantoms combined with Monte Carlo simulation techniques. We calculated organ dose conversion coefficients for head, chest, abdomen and pelvis, and chest-abdomen-pelvis scans, and compared the results with the existing data calculated from Caucasian phantoms. We derived representative organ doses for Korean adults using Korean CT dose surveys combined with the dose conversion coefficients. The organ dose conversion coefficients from the Korean adult phantoms were slightly greater than those of the ICRP reference phantoms: up to 13% for the brain doses in head scans and up to 10% for the dose to the small intestine wall in abdominal scans. We derived Korean representative doses to major organs in head, chest, and AP scans using mean CTDIvol values extracted from the Korean nationwide surveys conducted in 2008 and 2017. The Korean-specific organ dose conversion coefficients should be useful to readily estimate organ absorbed doses for Korean adult male and female patients undergoing CT scans.

A Study on Usefulness of Clinical Application of Metal Artifact Reduction Algorithm in Radiotherapy (방사선치료 시 Metal artifact reduction Algorithm의 임상적용 유용성평가)

  • Park, Ja Ram;Kim, Min Su;Kim, Jeong Mi;Chung, Hyeon Suk;Lee, Chung Hwan;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.9-17
    • /
    • 2017
  • Purpose: The tissue description and electron density indicated by the Computed Tomography(CT) number (also known as Hounsfield Unit) in radiotherapy are important in ensuring the accuracy of CT-based computerized radiotherapy planning. The internal metal implants, however, not only reduce the accuracy of CT number but also introduce uncertainty into tissue description, leading to development of many clinical algorithms for reducing metal artifacts. The purpose of this study was, therefore, to investigate the accuracy and the clinical applicability by analyzing date from SMART MAR (GE) used in our institution. Methode: and material: For assessment of images, the original images were obtained after forming ROIs with identical volumes by using CIRS ED phantom and inserting rods of six tissues and then non-SMART MAR and SMART MAR images were obtained and compared in terms of CT number and SD value. For determination of the difference in dose by the changes in CT number due to metal artifacts, the original images were obtained by forming PTV at two sites of CIRS ED phantom CT images with Computerized Treatment Planning (CTP system), the identical treatment plans were established for non-SMART MAR and SMART MAR images by obtaining unilateral and bilateral titanium insertion images, and mean doses, Homogeneity Index(HI), and Conformity Index(CI) for both PTVs were compared. The absorbed doses at both sites were measured by calculating the dose conversion constant (cCy/nC) from ylinder acrylic phantom, 0.125cc ionchamber, and electrometer and obtaining non-SMART MAR and SMART MAR images from images resulting from insertions of unilateral and bilateral titanium rods, and compared with point doses from CTP. Result: The results of image assessment showed that the CT number of SMART MAR images compared to those of non-SMART MAR images were more close to those of original images, and the SD decreased more in SMART compared to non-SMART ones. The results of dose determinations showed that the mean doses, HI and CI of non-SMART MAR images compared to those of SMART MAR images were more close to those of original images, however the differences did not reach statistical significance. The results of absorbed dose measurement showed that the difference between actual absorbed dose and point dose on CTP in absorbed dose were 2.69 and 3.63 % in non-SMRT MAR images, however decreased to 0.56 and 0.68 %, respectively in SMART MAR images. Conclusion: The application of SMART MAR in CT images from patients with metal implants improved quality of images, being demonstrated by improvement in accuracy of CT number and decrease in SD, therefore it is considered that this method is useful in dose calculation and forming contour between tumor and normal tissues.

  • PDF

Non-linear Responses of Hordeum vulgare Germs to Low Doses of Ionizing Radiation

  • Kim, Jin-Kyu;Alla A. Oudalova;Vladimir G. Dikarev
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.384-391
    • /
    • 2003
  • The induction of chromosome aberrations in Hordeum vulgare germs after irradiation is studied for the dose range of 10 to 1,000 mGy. The relationship between the frequency of aberrant cells and the absorbed dose is shown to be non -linear and has a dose-independent plateau within the range of 56-467 mGy where the level of cytogenetic damage is statistically significantly distinguished from the spontaneous level. The comparison of the goodness of the experimental data fitting with mathematical models of different complexities, using the most common quantitative criteria, demonstrates the benefit of the piecewise linear model over the linear and polynomial ones in approximating the cytogenetical disturbance frequency. The results of our study support the conclusion about indirect mechanism of chromosome aberrations induced by low doses or dose rates mutagenesis.

Variation of Dose due to the Wound Electrode of Ionization Chamber (굴곡이 있는 전리함 집전극에 기인한 선량 변화)

  • Lee, Byung-Koo;Kim, Jung-Nam
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.203-209
    • /
    • 2008
  • Nowadays the risk of radiation is getting more serious, so we must know the exact dose that was irradiated, Because very high radiation dose is used in radiation therapy field. We used the ionization chamber which measure the radiation dose in this study. We tried to know the incorrect result from the distortion of geometric structure of ionization chamber and we studied how to find the distortion of geometric structure of ionization chamber. We used a radio fluoroscopy to find the wound degree of electrode of ionization chamber and a reconstructed 3D CT image to analyze the wound degree of electrode quantitatively. we measured degree of distortion by comparing with absorbed dose of normal electrode and wound electrode. The comparative result is not absolute dosimetry at specific point but relative dosimetry between thats. We measured 4 MV, 10MV photon with same absorbed dose and dose rate. The degree of distortion of wound electrode was totally $5.5{\sim}7.2%$, and there was no difference between two energies. The variation induced from radiation dose to be irradiated and dose rate, and the degree of distortion from wound direction also was almost similar value. We could find that the geometric structure of ionization chamber that can influence a basic measurement of radiation dose can be changed by old usage and inattention of management in this study, especially winding of electrode can be happened, in radiation therapy field, It is very important to keep precise radiation dose quantitatively.

Average Glandular Dose In Mammography

  • Kim, K.H.;Ryu, Y.C.;Oh, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.319-321
    • /
    • 2004
  • The average glandular dose (AGD) is determined by the breast entrance skin exposure, x-ray tube target material, beam quality (half-value layer), breast thickness, and breast composition. Almost breast cancer always arises in glandular breast tissue. As a result, the average radiation absorbed dose to glandular tissue is the preferred measure of the radiation risk associated with mammography. If the normalized average glandular dose is known, the average glandular dose can be computed from the product of the normalized average glandular dose and breast entrance skin exposure. In this study, AGD was calculated by the breast thickness and various x-ray energy (HVL) in 50% glandular 50% adipose breast by Mo.-Rh. assembly. AGD is 84 mrad in compressed 5 cm breast. These results show that as increasing the breast thickness, dose also increases. But as increasing the x-ray tube voltage, dose decreases because of high penetrating ratio through the object. But high tube voltage is reducing the subject contrast. From this result, we have to consider the trade-off between subject contrast of image and dose to the patient and choose proper x-ray energy range.

  • PDF