• Title/Summary/Keyword: Absorbed dose

Search Result 562, Processing Time 0.03 seconds

Radiation Dose of Lens and Thyroid in Linac-based Radiosurgery in Humanoid Phantom (선형가속기형 방사선수술시 인형 팬텀에서 수정체 및 갑상선 선량)

  • Kim, Dae-Yong;Kim, Il-Han
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.517-529
    • /
    • 1998
  • Purpose : Although many studies have investigated the dosimetric aspects of stereotactic radiosurgery in terms of target volume, the absorbed doses at extracranial sites: especially the lens or thyroid - which are sensitive to radiation for deterministic or stochastic effect -have infrequently been reported. The aim of this study is to evaluate what effects the parameters of radiosurgery have on the absorbed doses of the lens and thyroid in patients treated by stereotactic radiosurgery, using a systematic plan in a humanoid phantom. Materials and Methods : Six isocenters were selected and radiosurgery was planned using the stereotactic radiosurgery system which the Department of Therapeutic Radiology at Seoul National University College of Medicine developed. The experimental radiosurgery plan consisted of 6 arc planes per one isocenter, 100 degrees for each arc range and an accessory collimator diameter size of 2 cm. After 250 cGy of irradiation from each arc, the doses absorbed at the lens and thyroid were measured by thermoluminescence dosimetry. Results : The lens dose was 0.23$\pm$0.08$\%$ of the maximum dose for each isocenter when the exit beam did not pass through the lens and was 0.76$\pm$0.12$\%$ of the maximum dose for each isocenter when the exit beam passed through the lens. The thyroid dose was 0.18$\pm$0.05$\%$ of the maximum dose for each isocenter when the exit beam did not pass through the thyroid and was 0.41$\pm$0.04$\%$ of the maximum dose for each isocenter when the exit beam Passed through the thyroid. The passing of the exit beam is the most significant factor of organ dose and the absorbed dose by an arc crossing organ decides 80$\%$ of the total dose. The absorbed doses of the lens and thyroid were larger as the isocenter sites and arc planes were closer to each organ. There were no differences in the doses at the surface and 5 mm depth from the surface in the eyelid and thyroid areas. Conclusion : As the isocenter and arc plane were placed closer to the lens and thyroid, the doses increased. Whether the exit beams passed through the lens or thyroid greatly influenced the lens and thyroid dose. The surface dose of the lens and thyroid consistently represent the tissue dose. Even when the exit beam passes through the lens and thyroid, the doses are less than 1$\%$ of the maximum dose and therefore, are too low to evoke late complications, but nevertheless, we should try to minimize the thyroid dose in children, whenever possible.

  • PDF

Absorbed Doses in Organs of the Head and Neck from Conventional Temporomandibular Joint Tomography (악관절 단층촬영시의 두경부 주요 기관의 흡수선량)

  • Cho Bong-Hae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.2
    • /
    • pp.411-416
    • /
    • 1999
  • Purpose : This study was done to evaluate the absorbed doses in organs of the head and neck for the conventional temporomandibular joint tomography. Materials and Methods : Dosimetry was performed with 32 LiF thermoluminescent dosimeters, which were placed in a tissue-equivalent phantom when the temporomandibular joint was examined by both lateral and frontal temporomandibular joint tomography. Results : For lateral tomography, parotid gland and preauricular area towards tube showed relatively high absorbed dose of 1056.9 μGy and 519.9 μGy respectively. For frontal tomography, the two largest absorbed doses were 259.2 μGy in orbit towards tube and 212.0 μGy in lens towards tube. Conclusion : Conventional temporomandibular joint tomography showed relatively low absorbed doses on critical organs. Thus, responsible use of it may not be limited.

  • PDF

Evaluation of the Usefulness of Digital Tomosynthesis in the Chest (흉부영역에서 디지털 토모신테시스의 유용성 평가)

  • Jang, Dong-Hyuk;Shim, Sung-Shine;Choi, Jae-Wook;Choi, Jun-Gu
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.10
    • /
    • pp.340-348
    • /
    • 2012
  • To evaluate the usefulness of tomosynthesis in the chest area, simple radiograph, low-dose CT, and tomosynthesis examinations were performed, and their absorbed doses were compared, and finally the images were evaluated. The absorbed dose recorded with the simple Radiograph examination was $0.33{\pm}0.27$ mGy, that of low-dose CT $1.26{\pm}0.56$ mGy, and that of tomosynthesis $0.55{\pm}0.02$ mGy, which indicate significance differences in absorbed doses among the examinations(p<0.001). Based on the evaluations of the images, The simple radiograph scores were $1.66{\pm}0.72$, $1.61{\pm}0.63$, and $1.57{\pm}0.73$, respectively; low-dose CT scores were $2.92{\pm}0.26$, $2.91{\pm}0.29$, and $2.88{\pm}0.32$, respectively; and tomosynthesis scores were $2.69{\pm}0.51$, $2.76{\pm}0.43$, and $2.66{\pm}0.61$, respectively. That is, there were statistically significant differences among the examinations(p<0.001), although there was no significant difference between low-dose CT and tomosynthesis examinations. Therefore, tomosynthesis is judged to be a useful examination that can minimize radiation doses to patients during chest examinations and enhance diagnostic efficacy.

Effects of Radiation Dose and Image Quality at the Coronary Angiography (관상동맥검사에서 선량과 화질에 관한 연구)

  • Ryu, Myung-Song;Choi, Nam-Gil;Han, Jae-Bok;Yang, Sook;Lee, Jong-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.4
    • /
    • pp.367-372
    • /
    • 2012
  • The aim of this study was to assess the effect of exposure factors such as kVp and mA applied by BMI on the image quality and patients absorbed dose of Coronary angiography in CT. Each data sets were into 4groups with different exposure values : Group A at 100kVp, 240mAs, Group B at 120kVp, 240mAs, Group C at 100kVp, 270mAs and Group D at 120kVp, 270mAs, and the mean of the scores of 4 groups was calculated for image quality as 4grades that is, 1(poor), 2(fair), 3(good) and 4(very good). Patient absorbed dose was calculated as DLP on the monitor. In case of absorbed dose, deviation in 2groups at 100kVp was 5.6 $mGy{\cdot}cm$, 11 $mGy{\cdot}cm$, was at 120kVp(DLP) with p<0.05. There was rather difference between groups with 100kVp or 120kVp respectively but the gaps were very little. No significant correlation was found between exposure factors and image quality in any images assessed(p>0.05), and the image quality was sufficient for diagnosis. As we applying coronary angiography, the selection of adequate exposure factors considering BMI identified might be effective for reduction of patient absorbed dose, improvement of image quality and diagnostic accuracy.

A Study on Mice Exposure Dose for Low-dose Gamma-irradiation Using Glass Dosimeter (유리선량계를 이용한 저선량 방사선의 마우스 피폭선량 연구)

  • Noh, Sung Jin;Kim, Hyo Jin;Kim, Hyun;Jeong, Dong Hyeok;Son, Tae Gen;Kim, Jung Ki;Yang, Kwangmo;Nam, Sang-Hee;Kang, Yeong-Rok
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.202-210
    • /
    • 2015
  • The low dose radiation is done for a long period, thus researchers have to know the exact dose distribution for the irradiated mouse. This research has been conducted in order to find out methods in transmitting an exact dose to mouse in a mouse irradiation experiment carried out using $^{137}Cs$ irradiation equipment installed in the DIRAMS (Dongnam Institution of Radiological & Medical Sciences) research center. We developed a single mouse housing cage and shelf with adjustable geometric factors such as distance and angle from collimator. The measurement of irradiated dose showed a maximal 42% difference of absorbed dose from the desired dose in the conventional irradiation system, whereas only 6% difference of the absorbed dose was measured in the self-developed mouse apartment system. In addition, multi mice housing showed much difference of the absorbed dose in between head and body, compared to single mouse housing in the conventional irradiation system. This research may allow further research about biological effect assessment for the low dose irradiation using the self-developed mouse apartment to provide more exact doses which it tries to transmit, and to have more reliability for the biological analysis results.

Absorbed Dose and Effective Dose for Lung Cancer Image Guided Radiation Therapy(IGRT) using CBCT and 4D-CBCT (폐암 영상유도방사선 치료 시 CBCT와 4D-CBCT를 이용한 흡수선량 및 유효선량에 관한 선량 평가)

  • Kim, Dae yong;Lee, Woo Suk;Koo, Ki Lae;Kim, Joo Seob;Lee, Sang Hyeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.57-64
    • /
    • 2016
  • Purpose : To evaluate the results of absorbed and effective doses using CBCT and 4D-CBCT settings for lung cancer. Materials and Methods : This experimental study. Measurements were performed using a Anderson rando phantom with OSLD(optically stimulated luminescent dosimeters). It was performed computed tomography(Lightspeed GE, USA) in order to express the major organs of the human body. Measurements were obtained a mean value is repeated three times each. Evaluations of effective dose and absorbed dose were performed the CL-IX-Thorax mode and Truebeam-Thorax mode CBCT. Additionally, compared Truebeam-Thorax mode CBCT with Truebeam-Thorax mode 4D-CBCT(Four-dimensional Cone Beam Computed Tomography) Results : Average absorbed dose in the CBCT of CL-IX was measured in lung 2.505cGy, heart 2.595cGy, liver 2.145cGy, stomach 1.934cGy, skin 2.233cGy, in case of Truebeam, It was measured lung 1.725cGy, heart 2.034cGy, liver 1.616cGy, stomach 1.470cGy, skin 1.445cGy. In case of 4D-CBCT, It was measured lung 3.849cGy, heart 4.578cGy, liver 3.497cGy, stomach 3.179cGy, skin 3.319cGy Average effective dose, considered tissue weighting and radiation weighting, in the CBCT of CL-IX was measured lung 2.164mSv, heart 2.241mSVv, liver 0.136mSv, stomach 1.668mSv, skin 0.009mSv, in case of Turebeam, it was measured lung 1.725mSv, heart 1.757mSv, liver 0.102mSv, stomach 1.270mSv, skin 0.005mSv, In case of 4D-CBCT, It was measured lung 3.326mSv, heart 3.952mSv, liver 0.223mSv, stomach 2.747mSv, skin 0.013mSv Conclusion : As a result, absorbed dose and effective Dose in the CL-IX than Truebeam was higher about 1.3 times and in the 4D-CBCT Truebeam than CBCT of Truebeam was higher about 2.2times However, a large movement of the patient and respiratory gated radiotherapy may be more accurate treatment in 4D-CBCT. Therefore, it will be appropriate to selectively used.

  • PDF

Radiation Exposure Evaluation of Visual Organs using Bismuth Shielding Material on Head CT Scan (두부 CT촬영 시 비스무스 차폐체를 활용한 시각 기관의 방사선피폭평가)

  • Kang, Se-Sik;Kim, Changsoo;Kim, Jung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.451-456
    • /
    • 2016
  • To analyse the absorbed radiation dose of the visual organs (eyes, corneas, lenses) during a head CT scan, a with the purpose of radiation protection was designed. Afterwards, the reduction rate of radiation dose when using an eye-shielding was analyzed. The results showed that the higher the energy, the higher the absorbed dose of the eyes. Excluding the head, the organs with high dose were the eyes, corneas, and lenses, respectively. Furthermore, the dose reduction rate before and after shielding was between 38% and 55% for the eyes, and between 35% and 52% for the corneas. In the case of the lenses, when the front was shielded, the reduction rate was 51%, and when the front and the side were shielded simultaneously, the reduction rate was 67%.

Determination of Gamma-Ray Depth-Dose Distribution in a Polyethylene Sphere Phantom

  • Ha, Chung-Woo;Jun, Jae-Shik;Park, Chae-Shik
    • Nuclear Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.285-293
    • /
    • 1975
  • A result of the study to determine the depth-dose distribution along the central axis of a polyethylene sphere in diameter of 30cm is described. Depth-dose distribution in the polyethylene sphere for broad beam of monoenergetic photons has been experimentally determined with thermoluminescent dosimeter as a cavity dosimeter. The conversion of dose absorbed in the LiF TLD to dose in the surrounding medium was carried out on the basis of Burlin's generalized cavity theory. Presented in graphical forms are the results obtained. The maximum absorbed doses in the sphere were observed at the depth of about 0.3cm and 0.5cm from the surface of the sphere for the gamma-rays of $^{137}$ Cs and $^{60}$ Co, respectively.

  • PDF

Calibration Examination of Dose Area Product Meters using X-ray (X선을 이용한 면적선량계의 교정 연구)

  • Jung, Jae Eun;Won, Do-Yeon;Jung, Hong-Moon;Kweon, Dae Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.37-42
    • /
    • 2017
  • We measured the absorbed dose and the area dose using an ionization chamber type of area dose product (DAP) meter and measured the calibration factor in the X-ray examination. In the indirect dose measurement method, the detector was installed in the radiation part of the X-ray equipment, and the measured value was calculated as the dose at the exposure part. The instrument used to calculate the calibration factor was an X-ray equipment (DK-550R / F, DongKang Medical Co., Ltd., Seoul, Korea). The calibration method for the calibration factor was to connect the DAP meter (PD-8100, Toreck Co. Ltd., Japan) to the calibration dosimeter tube voltage of 70 kV, tube current of 500 mA, 0.158 sec. The reference dosimeter used a semiconductor (DOSIMAX plus A, Scanditronix, $Wellh{\ddot{o}}fer$, Germany). After installing the DAP meter on the front of the multi-collimator of the ionization chamber, the calibration factor of the dosimeter was obtained using the reference dosimeter for accurate dose measurement. Experimental exposure values and values from the calibration dosimeter were calculated by multiplying each calibration factor. The calibration factor was calculated as 1.045. In order to calculate the calibration coefficient according to the tube voltage in the ionization type DAP dosimeter, the absorbed dose and the area dose were calculated and the calibration factor was calculated. The corrective area dose was calculated by calculating the calibration factor of the DAP meter.

LiF(Mg, Cu, Na, Si) Thermoluminescent Dosimeters for In-phantom Dosimetry of $^{60}Co\;{\gamma}$-rays (LiF(Mg, Cu, Na, Si) 열형광선량계를 사용한 $^{60}Co\;{\gamma}^-$선의 수중 흡수선량 측정)

  • Kim, Hyun-Ja;Chung, Woon-Hyuk;Lee, Woo-Gyo;Doh, Sih-Hong
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.57-65
    • /
    • 1990
  • Newly developed LiF(Mg, Cu, Na, Si) thermoluminescence phosphors sealed in a plastic capsules (32mm dia., 0.9mm wall thickness) were used for in-phantom dosimetry of $^{60}Co$ $\gamma$-irradiation. The absorbed doses in water were determined by applying the general cavity theory to the absorbed dose in TLD cavity, which was computed from exposure. The absorbed doses at various sites in the water-phantom were measured by LiF(Mg, Cu, Na, Si) TLD and compared with doses obtained by the ionization method. Both results were consistent within the experimental fluctuation$({\pm}3%)$ Central axis percentage depth doses and phantom-air ratios measured by LiF(Mg. Cu, Na, Si) TLD showed good agreement with the published values[Br. J. Radiology, Suppl. 17(1983)].

  • PDF