• Title/Summary/Keyword: Absolute measurement

Search Result 588, Processing Time 0.035 seconds

Absolute Temperature Measurement using White Light Interferometry

  • Kim, Jeong-Gon
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.89-93
    • /
    • 2000
  • Recently a new signal processing algorithm for white light interferometry was presented. In this paper, the proposed signal processing algorithm was applied for absolute temperature measurement using white light interferometry. Stability testing and absolute temperature measurement were demonstrated. Stability test demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe. The test also showed that the absolute temperature measurement system using white light interferometry is capable of obtaining the theoretical minimum detectable change (0.0005 fringe), which is consistent with the performance predicted by the proposed signal processing algorithm.

Uncertainty Assessment: Relative versus Absolute Point Dose Measurement for Patient Specific Quality Assurance in EBRT

  • Mahmood, Talat;Ibrahim, Mounir;Aqeel, Muhammad
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.111-121
    • /
    • 2017
  • Verification of dose distribution is an essential part of ensuring the treatment planning system's (TPS) calculated dose will achieve the desired outcome in radiation therapy. Each measurement have uncertainty associated with it. It is desirable to reduce the measurement uncertainty. A best approach is to reduce the uncertainty associated with each step of the process to keep the total uncertainty under acceptable limits. Point dose patient specific quality assurance (QA) is recommended by American Association of Medical Physicists (AAPM) and European Society for Radiotherapy and Oncology (ESTRO) for all the complex radiation therapy treatment techniques. Relative and absolute point dose measurement methods are used to verify the TPS computed dose. Relative and absolute point dose measurement techniques have a number of steps to measure the point dose which includes chamber cross calibration, electrometer reading, chamber calibration coefficient, beam quality correction factor, reference conditions, influences quantities, machine stability, nominal calibration factor (for relative method) and absolute dose calibration of machine. Keeping these parameters in mind, the estimated relative percentage uncertainty associated with the absolute point dose measurement is 2.1% (k=1). On the other hand, the relative percentage uncertainty associated with the relative point dose verification method is estimated to 1.0% (k=1). To compare both point dose measurement methods, 13 head and neck (H&N) IMRT patients were selected. A point dose for each patient was measured with both methods. The average percentage difference between TPS computed dose and measured absolute relative point dose was 1.4% and 1% respectively. The results of this comparative study show that while choosing the relative or absolute point dose measurement technique, both techniques can produce similar results for H&N IMRT treatment plans. There is no statistically significant difference between both point dose verification methods based upon the t-test for comparing two means.

An Efficient 3D Measurement Method that Improves the Fringe Projection Profilometry (Fringe Projection Profilometry를 개선한 효율적인 3D 측정 기법)

  • Kim, Ho-Joong;Cho, Tai-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1973-1979
    • /
    • 2016
  • As technologies evolve, diverse 3D measurement techniques using cameras and pattern projectors have been developed continuously. In 3D measurement, high accuracy, fast speed, and easy implementation are very important factors. Recently, 3D measurement using multi-frequency fringe patterns for absolute phase computation has been widely used in the fringe projection profilometry. This paper proposes an improved method to compute the object's absolute phase using the reference plane's absolute phase and phase difference between the object and the reference plane. This method finds the object's absolute phase by adding the difference between the reference plane's wrapped phase and the object's wrapped phase to the reference plane's absolute phase already obtained in the calibration stage. Through this method, there is no need to obtain multi-frequency fringe patterns about new object for the absolute phase computation. Instead, we only need the object's phase difference relative to the reference planes's phase in the measurement stage.

Absolute Distance Measurement using Synthetic Wavelength of Femto-second Laser (펨토초 레이저의 합성파를 이용한 절대거리 측정)

  • Kim Yun-Seok;Jin Jong-Han;Joo Ki-Nam;Kim Seung-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.569-572
    • /
    • 2005
  • Technological feasibility of using recently-available femtosecond ultra short pulse lasers for advanced precision length metrology is investigated with emphasis on absolute distance measurements with $10{\mu}m$ ??resolution over extensive ranges. The idea of using femtosecond lasers for the measurement of absolute distances is based on the fact that a short pulse train is a mode-locked combination of discrete monochromatic light components spanning a wide spectral bandwidth. The synthetic wavelength is created from the repetition frequency, $f_r$ of the femtosecond laser and for more precise resolution, higher-order harmonics of the repetition frequency may be selected as the synthetic wavelength by using appropriate electronic filters.

  • PDF

Design and Implementation of an Absolute Position Sensor Based on Laser Speckle with Reduced Database

  • Tak, Yoon-Oh;Bandoy, Joseph Vermont B.;Eom, Joo Beom;Kwon, Hyuk-Sang
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.362-369
    • /
    • 2021
  • Absolute position sensors are widely used in machine tools and precision measuring instruments because measurement errors are not accumulated, and position measurements can be performed without initialization. The laser speckle-based absolute position sensor, in particular, has advantages in terms of simple system configuration and high measurement accuracy. Unlike traditional absolute position sensors, it does not require an expensive physical length scale; instead, it uses a laser speckle image database to measure a moving surface position. However, there is a problem that a huge database is required to store information in all positions on the surface. Conversely, reducing the size of the database also decreases the accuracy of position measurements. Therefore, in this paper, we propose a new method to measure the surface position with high precision while reducing the size of the database. We use image stitching and approximation methods to reduce database size and speed up measurements. The absolute position error of the proposed method was about 0.27 ± 0.18 ㎛, and the average measurement time was 25 ms.

A Study on Targer Factor Value of Port State Control Inspection Using Absolute Measurement (절대평가법을 이용한 항만국통제 점검 표적점수 평가에 관한 연구)

  • Jang, Woon-Jae
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.471-477
    • /
    • 2010
  • In recently, IMO consider including an marine casualty factor when Port State Control Inspection evaluate.. This paper proposes an evaluation to Target Factor Values of Port State Control Inspections(PSCITFV) using absolute measurement. To this solve, therefore, this paper used the absolute measurement which is informed compensate the defect and the more rational and objective methode, checked the effectiveness to compare an result with absolute measurement and PSCITFV of Tokyo MOU using Wilcoxson test. Finally, rate change of PSC was investigated by an experiment which changed the values of evaluation factors. As a result, it was evaluation factors of high rate change that was detention, ship's age, casualty factors. Therefore, this factors have to a priority management to do for prevent of PSC.

Measurement of Absolute Magnitude and Position of HDD Unbalance based on Mobility (모빌리티 측정을 통한 하드디스크의 Unbalance 검출 및 보정방법)

  • Choi, Hyun;Kim, In-Woong;Lee, Jae-Won;Jeong, Yong-Koo;Choi, Jung-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.358-362
    • /
    • 2002
  • The HDD unbalance, with higher rotational speed, is directly influenced by the mechanical assembly allowance between clamping disk and platter disk. The low frequency structural vibration induced by the unbalance force finally gives rise to the structure borne noise of the personal computer. To meet the noise and vibration requirements, the absolute unbalance mass of HDD needs to be measured and adjusted in the disk assembling stage. This study introduces the measurement methods of the absolute magnitude and position of the unbalance mass of HDD based on the mobility and acceleration orbit. The absolute unbalance mass can be obtained by the acceleration responses and the mobility of the mechanical part, while the position of the unbalance mass ran be obtained by the rotation acceleration orbit.

  • PDF

Measurement Method of HDD Absolute Unbalance Magnitude and Position by measuring the Mobility (모빌리티 측정을 통한 하드디스크의 Unbalance 검출 및 보정방법)

  • Choe Hyeon;Kim In Ung;Lee Jae Won;Jeong Yong Gu;Choe Jeong Heon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.340.1-340
    • /
    • 2002
  • The unbalance exciting force induced by HDD of lately getting higher speed is directly influenced by the rotational speed and the mechanical assembly allowance between disk and spindle motor, and which gives rise to the structure borne noise of the personal computer. The absolute unbalance mass of HDD needs to be measured and adjusted by the counter mass to control the unbalance exciting force effectively in the stage of assembling the disk and spindle motor. This study introduces the measurement methods of the magnitude of the absolute unbalance mass and the position of HDD by 2 accelerometers. The absolute unbalance mass can be obtained by the acceleration responses and the mobility of the mechanical part, while the position of the unbalance mass can e obtained by the rotation acceleration orbit.

  • PDF

The Comparison of Absolute Dose due to Differences of Measurement Condition and Calibration Protocols for Photon Beams (6MV 광자선에서 측정조건의 변화와 측정법의 차이에 의한 절대 선량값의 비교)

  • Kim, Hoi-Nam
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.11-22
    • /
    • 1998
  • The absolute absorbed dose can be determined according to the measurement conditions ; measurement material, detector, energy and calibration protocols. The purpose of this study is to compare the absolute absorbed dose due to the differences of measurement condition and calibration protocols for photon beams. Dosimetric measurements were performed with a farmer type PTW and NEL ionization chambers in water, solid water, and polystyrene phantoms using 6MV photon beams from Siemens linear accelerator. Measurements were made along the central axis of $10{\times}10cm$ field size for constant target to surface distance of 100cm for water, solid water and polystyrene phantom. Theoretical absorbed dose intercomparisons between TG21 and IAEA protocol were performed for various measurement combinations on phantom, ion chamber, and electrometer. There were no significant differences of absorbed dose value between TG2l and IAEA protocol. The differences between two protocols are within $1\%\;while\;the\;average\;value\;of\;IAEA\;protocol\;was\;0.5\%$ smaller than TG2l protocol. For the purpose of comparison, all the relative absorbed dose were nomalized to NEL ion chamber with Keithley electrometer and water phantom, The average differences are within $1\%,\;but\;individual\;discrepancies\;are\;in\;the\;range\;of\;-2.5\%\;to\;1.2\%$ depending upon the choice of measurement combination. The largest discrepancy of $-25\%$ was observed when NEL ion chamber with Keithley electrometer is used in solid water phantom. The main cause for this discrepancy is due to the use of same parameters of stopping power, absorption coefficient, etc. as used in water phantom. It should be mentioned that the solid water phantom is not recommended for absolute dose calibration as the alternative of water, since absorbed dose show some dependency on phantom material other than water. In conclusion, the trend of variation was not much dependent on calibration protocol. However, It shows that absorbed dose could be affected by phantom material other than water.

  • PDF