• Title/Summary/Keyword: Absolute Strain

Search Result 66, Processing Time 0.027 seconds

Effect of Refining on the Stress-Strain Characteristics and Physical Properties of Paper (고해가 종이의 응력-변형 특성 및 물성에 미치는 영향)

  • Won, Jong-Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.4 s.117
    • /
    • pp.10-16
    • /
    • 2006
  • The study was carried out to investigate how the refining of pulps affects the stress-strain characteristics and physical properties of paper. SwBKP and HwBKP were refined with Hollender laboratory beater to obtain three levels of freeness(500, 400 and 300 ml CSF) at the different consistencies(0.5% and 1.0%). The effects of fines were also evaluated. The stresses and strains of papers made from SwBKP and HwBKP were increased with refining. The absolute value of strain in paper made from SwBKP was higher than those of paper made from HwBKP. We also found that the presence of fines increased the stress and strain significantly in both pulp types. The refining at lower pulp consistency gave higher stress and strain properties. Most physical properties of paper were improved with refining, but the effect of refining consistency depended on the characteristics of each physical properties.

The Determination of Stress Distribution in WC-Ni Cemented Carbide Composites by Neutron Diffraction

  • Seol, Kyeongwon
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.232-238
    • /
    • 1995
  • The thermal stress distribution of WC and Ni binder phases In WC-26st.%Ni and WC-6wt.%Ni composites has been investigated over the temperature range 100-900 K using a time-of-flight neutron diffractometer. To determine the stress distribution, the breadths of WC and Ni peaks in the reference powder and the composites were analyzed. The peak breadths were corrected for particle size effect using a procedure based on the integral peak breadth method of particle size-strain analysis. The result shows a broad range of strain, and thus stress, is present in the WC and Ni binder phases of the composites. The strain distribution of both phases broadens as the temperature decreases, and some fraction of total strain distribution of the WC phase remains tensile regardless of the temperature. The strain distribution of the WC phase broadens as the binder content increases, and that of Ni binder phase broadens as the binder content decreases, which means the strain distribution broadens as the absolute value of residual stress increase.

  • PDF

Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.149-167
    • /
    • 2013
  • The complete stress-strain behavior of steel fiber reinforced concrete in compression is needed for the analysis and design of structures. An experimental investigation was carried out to generate the complete stress-strain curve of high-performance steel fiber reinforced concrete (HPSFRC) with a strength range of 52-80 MPa. The variation in concrete strength was achieved by varying the water-to-cementitious materials ratio of 0.40-0.25 and steel fiber content (Vf = 0.5, 1.0 and 1.5% with l/d = 80 and 55) in terms of fiber reinforcing parameter, at 10% silica fume replacement. The effects of these parameters on the shape of stress-strain curves are presented. Based on the test data, a simple model is proposed to generate the complete stress-strain relationship for HPSFRC. The proposed model has been found to give good correlation with the stress-strain curves generated experimentally. Inclusion of fibers into HPC improved the ductility considerably. Equations to quantify the effect of fibers on compressive strength, strain at peak stress and toughness of concrete in terms of fiber reinforcing index are also proposed, which predicted the test data quite accurately. Compressive strength prediction model was validated with the strength data of earlier researchers with an absolute variation of 2.1%.

Design of Denitrification Reactor by Using Permeabilized and Immobilized Paracoccus denitrificans (Permeabilized Paracoccus denitrificans를 이용한 고정화 균주의 탈질화 반응기 설계)

  • Yun, Mi-Sun;Song, Ju-Yeong;Park, Keun-Ho
    • KSBB Journal
    • /
    • v.20 no.2 s.91
    • /
    • pp.100-105
    • /
    • 2005
  • Removal of nitrogen compound from waste water is essential and often accomplished by biological process. Denitrification bacterium, Paracoccus denitrificans (KCTC 2350) is employed to estimate the denitrification ability and the characteristics. In the immobilized biological reactor system, the measurement of absolute amount of active strain in the reactor is comparatively difficult or impossible. In this. study, a reactor was designed with the unwoven texture wrapped peep holed plastic tube to calculate the absolute amount of active strain by comparing the activity of the permeabilized and or immobilized reactor and the free cell reactor The reactor system was continuous stirred tank reactor and the reaction rate of substrate consumption was assumed to satisfy the Michaelis-Menten equation. The effluent concentration of nitrate and nitrite was measured to estimate the apparent parameter of Michaelis-Menten equation. As a result, we found that the amount of immobilized active strain was figured out to be half of the total active strain in the reactor and the time required to be reached in the equilibrium state in the permeabilized and or immobilized reactor system was figured out to be shorter than that of the free cell reactor system.

Axial compressive behaviour of circular CFFT: Experimental database and design-oriented model

  • Khan, Qasim S.;Sheikh, M. Neaz;Hadi, Muhammad N.S.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.921-947
    • /
    • 2016
  • Concrete Filled Fibre Reinforced Polymer Tube (CFFT) for new columns construction has attracted significant research attention in recent years. The CFFT acts as a formwork for new columns and a barrier to corrosion accelerating agents. It significantly increases both the strength capacity (Strength enhancement ratio) and the ductility (Strain enhancement ratio) of reinforced concrete columns. In this study, based on predefined selection criteria, experimental investigation results of 134 circular CFFT columns under axial compression have been compiled and analysed from 599 CFFT specimens available in the literature. It has been observed that actual confinement ratio (expressed as a function of material properties of fibres, diameter of CFFT and compressive strength of concrete) has significant influence on the strength and ductility of circular CFFT columns. Design oriented models have been proposed to compute the strength and strain enhancement ratios of circular CFFT columns. The proposed strength and strain enhancement ratio models have significantly reduced Average Absolute Error (AAE), Mean Square Error (MSE), Relative Standard Error of Estimate (RSEE) and Standard Deviation (SD) as compared to other available strength and strain enhancement ratios of circular CFFT column models. The predictions of the proposed strength and strain enhancement ratio models match well with the experimental strength and strain enhancement ratios investigation results in the compiled database.

Strength and strain modeling of CFRP -confined concrete cylinders using ANNs

  • Ozturk, Onur
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.225-239
    • /
    • 2021
  • Carbon fiber reinforced polymer (CFRP) has extensive use in strengthening reinforced concrete structures due to its high strength and elastic modulus, low weight, fast and easy application, and excellent durability performance. Many studies have been carried out to determine the performance of the CFRP confined concrete cylinder. Although studies about the prediction of confined compressive strength using ANN are in the literature, the insufficiency of the studies to predict the strain of confined concrete cylinder using ANN, which is the most appropriate analysis method for nonlinear and complex problems, draws attention. Therefore, to predict both strengths and also strain values, two different ANNs were created using an extensive experimental database. The strength and strain networks were evaluated with the statistical parameters of correlation coefficients (R2), root mean square error (RMSE), and mean absolute error (MAE). The estimated values were found to be close to the experimental results. Mathematical equations to predict the strength and strain values were derived using networks prepared for convenience in engineering applications. The sensitivity analysis of mathematical models was performed by considering the inputs with the highest importance factors. Considering the limit values obtained from the sensitivity analysis of the parameters, the performances of the proposed models were evaluated by using the test data determined from the experimental database. Model performances were evaluated comparatively with other analytical models most commonly used in the literature, and it was found that the closest results to experimental data were obtained from the proposed strength and strain models.

An interpretable machine learning approach for forecasting personal heat strain considering the cumulative effect of heat exposure

  • Seo, Seungwon;Choi, Yujin;Koo, Choongwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.6
    • /
    • pp.81-90
    • /
    • 2023
  • Climate change has resulted in increased frequency and intensity of heat waves, which poses a significant threat to the health and safety of construction workers, particularly those engaged in labor-intensive and heat-stress vulnerable working environments. To address this challenge, this study aimed to propose an interpretable machine learning approach for forecasting personal heat strain by considering the cumulative effect of heat exposure as a situational variable, which has not been taken into account in the existing approach. As a result, the proposed model, which incorporated the cumulative working time along with environmental and personal variables, was found to have superior forecast performance and explanatory power. Specifically, the proposed Multi-Layer Perceptron (MLP) model achieved a Mean Absolute Error (MAE) of 0.034 (℃) and an R-squared of 99.3% (0.933). Feature importance analysis revealed that the cumulative working time, as a situational variable, had the most significant impact on personal heat strain. These findings highlight the importance of systematic management of personal heat strain at construction sites by comprehensively considering the cumulative working time as a situational variable as well as environmental and personal variables. This study provided a valuable contribution to the construction industry by offering a reliable and accurate heat strain forecasting model, enhancing the health and safety of construction workers.

Comparison of microbial molecular diagnosis efficiency within unstable template metagenomic DNA samples between qRT-PCR and chip-based digital PCR platforms

  • Dongwan Kim;Junhyeon Jeon;Minseo Kim;Jinuk Jeong;Young Mok Heo;Dong-Geol Lee;Dong Keon Yon;Kyudong Han
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.52.1-52.10
    • /
    • 2023
  • Accurate and efficient microbial diagnosis is crucial for effective molecular diagnostics, especially in the field of human healthcare. The gold standard equipment widely employed for detecting specific microorganisms in molecular diagnosis is quantitative real-time polymerase chain reaction (qRT-PCR). However, its limitations in low metagenomic DNA yield samples necessitate exploring alternative approaches. Digital PCR, by quantifying the number of copies of the target sequence, provides absolute quantification results for the bacterial strain. In this study, we compared the diagnostic efficiency of qRT-PCR and digital PCR in detecting a particular bacterial strain (Staphylococcus aureus), focusing on skin-derived DNA samples. Experimentally, specific primer for S. aureus were designed at transcription elongation factor (greA) gene and the target amplicon were cloned and sequenced to validate efficiency of specificity to the greA gene of S. aureus. To quantify the absolute amount of microorganisms present on the skin, the variable region 5 (V5) of the 16S rRNA gene was used, and primers for S. aureus identification were used to relative their amount in the subject's skin. The findings demonstrate the absolute convenience and efficiency of digital PCR in microbial diagnostics. We suggest that the high sensitivity and precise quantification provided by digital PCR could be a promising tool for detecting specific microorganisms, especially in skin-derived DNA samples with low metagenomic DNA yields, and that further research and implementation is needed to improve medical practice and diagnosis.

Strains of abutment and bones on implant overdentures (임플란트 피개의치에서 지대주와 골의 변형률에 관한 연구)

  • Kim, Myung-Seok;Heo, Seong-Joo;Koak, Jai-Young;Kim, Sung-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.222-231
    • /
    • 2009
  • Statements of the problem: Over the past decades, conventional complete dentures were used for various patients although they have incomplete function. Overdentures using dental implants could help the improvement of denture function. Purpose: The purpose of this study was to compare the strains of abutment and bone on implant overdenture between splinted and unsplinted type of prosthesis. Additionally, the strain values of parallel placed implant model and unparallel placed implant model were compared. Material and methods: Two acrylic resin model were prepared and two implants were placed at the canine positions in each model. In the first model, two implant were placed parallel. In the second model, two implants were placed with 10 degree labiolingual divergence. Two types of abutment were connected to the fixtures alternatively. One was splint type of Hader bar, the other was unsplint type of ball abutment. Overdentures were fabricated with corresponding attachment systems and seated on abutments. Strains of abutments and labial bone simulants were measured with electric resistance strain gauges when static load from 100 N to 200 N were applied to overdentures. Results: 1. Splinted type of overdentures using bar and clip showed higher absolute strain values. But the strain was compressive and the load was shared by two implants(P<.05). 2. Unsplinted type overdentures using ball and O-ring showed low absolute strain values(P<.05). 3. Labially inclined implant showed higher tensile strain values in unsplinted type of prosthesis than in splinted type of prosthesis. Lingually inclined implant showed rather low strain values under load(P<.05). 4. Non parallel implant model showed higher absolute strain values than parallel placed implant model comprehensively(P<.05).

Non-tubular bonded joint under torsion: Theory and numerical validation

  • Pugno, Nicola;Surace, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.125-138
    • /
    • 2000
  • The paper analyzes the problem of torsion in an adhesive non-tubular bonded single-lap joint. The joint considered consists of two thin rectangular section beams bonded together along a side surface. Assuming the materials involved to be governed by linear elastic laws, equilibrium and compatibility equations were used to arrive at an integro-differential relation whose solution makes it possible to determine torsional moment section by section in the bonded joint between the two beams. This is then used to determine the predominant stress and strain field at the beam-adhesive interface (stress field along the direction perpendicular to the interface plane, equivalent to the applied torsional moment and the corresponding strain field) and the joint's elastic strain (absolute and relative rotations of the bonded beam cross sections). All the relations presented were obtained in closed form. Results obtained theoretically are compared with those given by a three dimensional finite element numerical model. Theoretical and numerical analysis agree satisfactorily.