• 제목/요약/키워드: Abrasive wear

검색결과 286건 처리시간 0.029초

과공정 Al-Si 합금의 내마모성 연구 (A Study on the Wear Resistant Property in Hyper-eutectic Al-Si Alloy)

  • 김헌주;정운재
    • 한국주조공학회지
    • /
    • 제13권6호
    • /
    • pp.563-573
    • /
    • 1993
  • The wear resistance of Hyper-eutectic Al-Si alloy, have recently been noticed as a new automobile material, was investigated. For the purpose of developing wear resistant Al-Si alloy, some factors which attribute to wear resistance are examined as follows; refinement of primary Si particle during solidification, and effect of refinement on wear resistance and other mechanical properties. The most effective refinement was accomplished by adding both NaF and S, and this improve wear-resistance in abrasive wear type. The wear losses of specimens cast in metal mold were ruduced to 80% of those in sand mold. T6 heat treatment increases hardness, which resulted in reduction of wear loss about $3{\sim}18%$.

  • PDF

MoS2/Montmorillonite Nanocomposite: Preparation, Tribological Properties, and Inner Synergistic Lubrication

  • Cheng, Lehua;Hu, Enzhu;Chao, Xianquan;Zhu, Renfa;Hu, Kunhong;Hu, Xianguo
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850144.1-1850144.13
    • /
    • 2018
  • A nano-$MoS_2$/montmorillonite K-10 (K10) composite was prepared and characterized. The composite contains two types of 2H-$MoS_2$ nanoparticles. One is the hollow spherical $MoS_2$ with a size range of 75 nm, and the other is the spherical nano cluster of $MoS_2$ with a size range of 30 nm. The two kinds of nano-$MoS_2$ were formed via assembly of numerous $MoS_2$ nano-platelets with a size of ~10 nm. A tribological comparison was then made among nano-$MoS_2$/K10, K10, nano-$MoS_2$ and a mechanical mixture of K10 and nano-$MoS_2$. K10 reduced the wear but slightly increased the friction. Nano-$MoS_2$ remarkably reduced both friction and wear. The mechanical mixture demonstrated better wear resistance than nano-$MoS_2$, indicating a synergistic anti-wear effect of nano-$MoS_2$ and K10. The synergistic effect was reinforced using nano-$MoS_2$/K10 instead of the mechanical mixture. A part of the $MoS_2$ in the contact region always lubricated the friction pair, and the rest formed a tribofilm. K10 segregated the friction pair to alleviate the ablation wear but magnified the abrasive wear. S-$MoS_2$ protects K10 and they together function as both a lubricant and an isolating agent to reduce the ablation and abrasive wear.

이온질화 에 있어서 첨가탄소량 이 경도 및 마모특성 에 주는 영향 (The Added Carbon Content Effect on the Hardness And Wear Characteristics in Ion-Nitriding)

  • 김희송
    • 대한기계학회논문집
    • /
    • 제7권1호
    • /
    • pp.19-27
    • /
    • 1983
  • This paper deals with hardness and wear characteristics of ion-nitrided metal, and with ion-nitride processing which is concerned with the effects of added carbon content in gas atmosphere. A small optimal amount of carbon content in gas atmosphere increase compound layer thickness, as well as to increase diffusion layer thickness and hardness, and reduces wear rate when the applied wear load is small. It is found in the analysis that under small applied wear load, the critical depth where voids and cracks may be created and propagated is located at the compound layer, so that the abrasive wear where hardness is an important factor, is created and the existence of compound layer reduces the amount of wear. When the load becomes large, the critical depth is located below nucleation and propagation, is created and the existence of compound layer increase wear rate.

$Al_{2}O_{3}$$TiO_{2}$를 플라즈마 용사한 코팅재의 마모 특성 (Wear Characteristics of $Al_{2}O_{3}\;and\;TiO_{2}$ Coating Materials by Plasma Spray)

  • 김성익;김희곤;김귀식
    • Tribology and Lubricants
    • /
    • 제22권5호
    • /
    • pp.282-289
    • /
    • 2006
  • This paper is to investigate the wear behaviors of two type ceramics, $Al_{2}O_{3}\;and\;TiO_{2}$, by coated plasma thermal spray method under the lubricative environment. The lubricative environments are grease fluids, a general hydraulic fluids, and bearing fluids. The wear testing machine used a pin on disk type. Wear characteristics, which were friction force, friction coefficient and the specific wear rate, according to the lubricative environments were obtained at the four kinds of load and sliding velocity is 0.2 m/sec. After the wear experiments, the wear surfaces of the each test specimen were observed by a scanning electronic microscope.

롤포밍 공정에서의 롤 마모에 관한 연구 (A Study on Roll Wear in the Roll Forming Process)

  • 강병석;김낙수
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1881-1888
    • /
    • 2003
  • This study show a numerical method to predict roll wear in the roll forming process. Archard's wear model was reformulated in an elemental form to predict volume of roll wear and then wear depth on the roll was calculated using the results of finite element analysis. Abrasive wear occurs at contact area in the roll forming process and the results of simulation are compared with experimental data in production line. The wear simulation approach with 3-D FEM program for roll forming process, SHAPE-RF is in good agreement with it in tendency.

Laser Surface Cladding 고탄소 9CrSi 합금강의 마모 특성 (Wear characteristics of High Carbon 9CrSi Alloy Steel of Laser Surface Cladding)

  • 유능희;강성군
    • 한국재료학회지
    • /
    • 제11권10호
    • /
    • pp.813-819
    • /
    • 2001
  • The microstructure and the distribution of hardness of Co and A1 alloy powder cladding layer in high carbon 9CrSi alloy steel for roll materials cladded by laser surface cladding were investigated. And, for the evaluation of soundness as the roll materials, we examined the wear resistance of the cladding materials with the wear appratus of pin on disc type. The experimental results showed that the microstructure of laser cladding layer was constituted with the clad surface layer, the alloy layer, the heat treatment layer with base metal. The wear resistance of Ni alloy Powder cladding material was superior to that of Co alloy powder cladding material both at the low speed (0.46m/s) and the high speed(0.92m/s). It seemed that the behavior of wear showed the abrasive wear at the early stage and the adhesive wear at the late stage.

  • PDF

재래형 콤포짓트 레진의 마찰 . 마멸거동 (Friction and Wear Behaviors of Conventional Composite Resins)

  • 임정일;서세광;김교한;김석삼
    • Tribology and Lubricants
    • /
    • 제16권3호
    • /
    • pp.166-172
    • /
    • 2000
  • The friction and wear characteristics of dental composite resins such as Charisma, Elitefil, TPH and Veridonfil were investigated. Furthermore, The surface characteristics examination, the analysis of contents of filler, Victors hardness and fracture toughness measurement of composite resins were preformed. The wear test applied ball to move reciprocationally on flat wear tester at room temperature. Microstructure of surfaces and worn surfaces were observed by SEM. Experimental results indicate that the friction coefficient of TPH was quite low, and the wear resistance of TPH was better than that of Charisma, Elitefil or Veridonfil at the same condition. The main wear mechanism was found to be plastic flow and abrasive wear by failure of filler's bond to the matrix.

초음파 진동을 이용한 세라믹스의 미세 구멍 가공 기술 (A Study on Micro-hole machining for Ceramics(A1$_2$O$_3$) Using Ultrasonic vibration)

  • 이봉구;최헌종;이석우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.988-992
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile application. The past decade has seen a tremendous in the use of ceramics in structural application. The excellent thermal, chemical and wear resistance of these material can be realized because of recent improvements in the overall strength and uniformity of advanced ceramics. Ultrasonic machining, in which abrasive particles in slurry with water are presented to the work surface in the presence of an ultrasonic-vibrating tool, is process which should be of considerable interest, as its potential is not limited by the electrical or chemical characteristics of the work material, making it suitable for application to ceramics. This paper intends to further the understanding of the basic mechanism of ultrasonic machining for brittle material and ultrasonic machining of ceramics based in the fracture-mechanic concept has been analyzed.

  • PDF

Tribological Evaluation of Dental Composite Resins Containing Prepolymerized Particle Fillers

  • Ren, Jing-Ri;Kim, Kyo-Han;Kim, Seock-Sam
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.727-734
    • /
    • 2001
  • The Tribological evaluation of commercial dental composite resins containing prepolymerized particle fillers was investigated. Composite resins such as Metafil, Silux Plus, Heliomolar, and Palfique Estelite were selected as specimens. In the wear tests, a ball-on-flat wear test method was used. The friction coefficient of Metafil was quite high. The wear resistance of Silux Plus and Palfique Estelite was better than that of Metafil and Heliomolar under the same experimental conditions. The main wear mechanism of the composite resins containing prepolymerized particle fillers was abrasive wear caused by the brittle fracture of the prepolymerized particles and the debonding of the filler and the matrix.

  • PDF

THE CHARACTERISTICS OF FRETTING WEAR

  • Iwabuchi, Akira
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제23회 학술대회
    • /
    • pp.1-3
    • /
    • 1996
  • The characteristics of fretting wear are reviewed. Fretting damage depends on slip amplitude and classified into three groups: (1) an annular damage according to Mindlin's analysis at microslip region, (2) strong adhesive deformation without loose wear particles at the intermediate region, and (3) formation of fine oxide particles at the gross slip region. The critical slip amplitude of fretting is the boundary between (2) and (3). The boundary slip amplitude depends on normal load. The wear rate increases and saturates with increasing slip amplitude. But it is constant by considering the critical amplitude. The role of oxide particles are discussed. Three different actions are noted: accelerating wear, preventing wear and insignificant effect. The oxide shows two opposing effect depends on normal load and slip amplitude. This is related to the removal rate from the interface (abrasive action) and compaction rate at the interface to form a protective layer. The effect of oxidation is significant to determine the wear and friction. The diffusion of oxygen is restricted at the small amplitude. As a result, crack formation at the boundary is a predominant damage, related to fretting fatigue damage.

  • PDF