• Title/Summary/Keyword: Abrasive Blasting

Search Result 37, Processing Time 0.021 seconds

A study on the Grindability of Fine Ceramics by Experimental Method (실험적 방법에 의한 파인세라믹스의 연삭성에 관한 연구)

  • Kim, Seong-Kyeum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.35-42
    • /
    • 2011
  • This paper describes the characteristics of high speed grinding and the influence of wheel surface speed V and a grindability of the grinding materials. The various fine ceramics pieces was ground by metal and vitrified bonded diamond wheel. The surface roughness of fine ceramics(Zirconia($ZrO_2$), Silicon Carbide(SiC), Silicon Nitride($Si_3N_4$), Alumina($Al_2O_3$)) decreases from $0.05{\mu}m(R_{max})$ to $0.025{\mu}m(R_{max})$ when the wheel speed at grinding point increases the wheel speed. Relation between the temperature at grinding point and surface roughness was linear. Abrasive jet machining(AJM), a specialized from of shot blasting, is considered one of the most helpful micro machining methods for hard and brittle materials such as glasses and ceramics by constant pressure grinding.

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.

Effect of Blast Cleaning on Fatigue Behavior of Non-load-carrying Fillet Welded Cruciform Joints (블라스트 표면처리가 하중비전달형 십자필렛 용접이음의 피로거동에 미치는 영향)

  • Kim, In Tae;Jung, Young Soo;Kim, Kwang Jin;Lee, Dong Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • Blast cleaning has been applied in steel bridges for cleaning forged surface and increasing adhesive property of applied coating systems. Blasting is the operation of cleaning or preparing a surface by forcible propelling a stream of abrasive metals against it. Blast cleaning may improve surface geometry and induce compressive residual stress, and eventually may increase fatigue life of weld joints. In this paper, fatigue tests were carried out on three types of non-load-carrying fillet welded cruciform joints, as-welded joints, blast-treated joints, and stress-relieved joints after blasting, in order to investigate effect of blast cleaning on fatigue behavior of the weld joints. By Blast cleaning, the weld toe radius was increased by 29% and compressive residual stress was induced near weld toes. Blast cleaning increased fatigue life and fatigue endurance limit of the weld joints. When the applied stress ranges decreased, the increment in fatigue life became larger. About a 150% increase in fatigue limit could be realized by using blast cleaning.

The Development of Pin Screws into the Bone for External Fixator (체외 고정구용 골 삽입 금속 나사 개발)

  • Choi, Y.C.;Rhee, K.M.;Na, W.H.;Song, B.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.2 no.1
    • /
    • pp.5-17
    • /
    • 2009
  • We developed bone-insertion pin screw that can be used for purposed treatment by combining with the external fixator which is the subsidiary tool for the healing of the fracture (open fracture of long bone, reconstruction of soft tissue and arthrodesis etc.) Furthermore, for the frist time, we succeeded in domestic-producing this screw, using specially-designed treating tool stuck on the lathe machine and abrasive blasting machine, and the post-dealing technique and process. In comparison with other foreign products, we could get more desirable results in various tests. This pin screw has 103% characteristics of the average of foreign products. Thus we'd like to introduce design techniques, post-dealing process and result of function tests.

  • PDF

Histological response of anodized titanium implant (양극 산화한 티타늄 임프란트의 조직학적 반응)

  • Lim, Svetlana;Heo, Seong-Joo;Han, Chong-Hyun;Kim, Tae-II;Seo, Yang-Jo;Ku, Young;Chung, Kyoung-Uk;Chung, Chong-Pyoung;Han, Soo-Boo;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.3
    • /
    • pp.525-536
    • /
    • 2005
  • 여러 연구들을 통해 많은 학자들이 임프란트 안정성(stability)은 표면의 특징에 달려있다고 생각하게 되었다. 표면의 구조, 에너지, 산화물(oxide) 두께와 표면성상(topography)등 임프란트의 표면의 특징은 임프란트와 골조직의 반응에서 중요한 역할을 하는 것이 알려짐에 따라 티타뮨 임프란트의 표면의 처리 방법에 큰 관심을 가지게 되었다. 그 중에서 티타늄 임프란트 표면의 산화피막화(anodization)가 한 방법으로 대두되었다. 이 방법은 전기화학적 방식으로 임프란트 표면에 거칠고(rough)두꺼우며(thick), 기공(pore)을 가지는 산화물 막을 형성하는 것으로 산화물의 두께는 coronal 부분(l-2 ${\mu}m$)으로부터 apical부분(7-10 ${\mu}m$)까지 증가하게 된다. 산화피막의 표면에는 다양한 크기의 수많은 기공이 주로 1-2 ${\mu}m$ 두께로 임프란트의 apical 부분에서 존재하며, 임프란트 표면의 거칠기는 conical 위부분에서 apical 부분까지 계속 증가한다(평균 Ra value=1.2 ${\mu}m$). 또 다른 표면 처리 방법으로는 blasting 후에 etching을 한 SLA 표면이 있다. 이 연구의 목적은 일반적으로 많이 이용되고 있는 anodized 표면과 SLA 표면의 조직학적 반응을 비교 분석하는 것이다. 24개 임프란트를(anodized surfaced implant-12개 , SLA-12개, 8mm ${\times}\;{\Phi}$ 4.3) 6마리 토끼의 오른쪽과 왼쪽 femur에 식립하였다. 12주후에 동물들을 희생하여 EXACT cutting-grinding system을 이용하여 샘플을 절단하고 800, 1200 및 4000 번 연마제(abrasive) paper로 20-50 ${\mu}m$ 까지 grinding하였다. 샘플은 Multiple staining 용액으로 염색하여 SLA 임프란트 군과 비교하였다. 골과 임프란트 사이에 연결을 TDI 프로그램을 이용하여 %로 측정하였다. SLA 임프란트 군 경우에는 골과 임프란트 사이의 연결이 $74{\pm}19%$ 이고, 양극 산화한 임프란트 군 경우에는 $77{\pm}9%$이었다. 양극 산화한 티타늄 임프란트의 골 접촉률이 SLA 표면 임프란트 경우과 통계학적으로 유의한 차이는 보이지 않았다.

Development of a General Occupational Safety and Health (OSH) Guide for Maintenance Work at Electronics Industry Processing Facilities (전자산업 공정 설비 작업 안전보건가이드 개발)

  • Soyeon Kim;Seunghee Lee;Jeongyeon Park;Taek-hyeon Han;Jae-jin Moon;Ingyun Jung;Kyung Ehi Zoh;Seyoung Kwon;Kwang Jae Chung;Dong-Uk Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.1
    • /
    • pp.18-25
    • /
    • 2024
  • Objectives: The primary aim of this study is to create an Occupational Safety and Health (OSH) guide for high-risk maintenance tasks, specifically one designed for maintenance work (MW) in the electronics industry. Methods: The methodology involved a literature review, field investigations, and discussions. An initial draft of the OSH guide was created and then refined through consultations with experts possessing extensive experience in MW for electronic processes. Results: Specific MW tasks within electronics processing facilities identified as high-risk by the research were selected. A comprehensive OSH guide for these tasks was developed consisting of approximately 11 to 12 components and encompassing about 20-25 pages. Implementing safety and health measures before, during, and after MW is crucial for the protection of maintenance personnel. The guide is enriched with real-case scenarios of industrial accidents and occupational diseases to enhance maintenance workers' comprehension of the OSH principles. For a clearer understanding of and adherence to the safety protocols, the guide incorporates visual aids, including cartoons and photographs. Conclusions: This OSH guide is designed to ensure the protection of workers involved in maintenance activities in the electronics industry. It aligns with global standards set by the International Organization for Standardization (ISO) and Semiconductor Equipment and Material International (SEMI) to ensure a high level of safety and compliance.

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.