• Title/Summary/Keyword: Abrasion behavior

Search Result 83, Processing Time 0.023 seconds

Influence of Dicyclopentadiene Resin on Abrasion Behavior of Silica-Filled SBR Compounds Using Different Abrasion Testers

  • Eunji Chae;Seong Ryong Yang;Seok Hyun Cho;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.103-111
    • /
    • 2023
  • The abrasion resistances of silica-filled styrene-butadiene rubber (SBR) compounds prepared with and without dicyclopentadiene resin (SBR-R and SBR-0, respectively) were studied using four different abrasion testers, namely cut and chip (CC), Lambourn, DIN, and laboratory abrasion tester (LAT100). The effect of the resin on the abrasion behavior was elucidated by analyzing the morphologies and size distributions of wear particles. All the wear particles had rough surfaces, but those obtained in the Lambourn abrasion test exhibited relatively smooth surfaces. The size distributions of the wear particles showed different trends depending on the abrasion tester and the rubber compound; however, most of the wear particles were larger than 1000 ㎛. The SBR-R sample showed a wide range of particle sizes (from 63 ㎛) in the LAT100 abrasion test and majority of the wear particles were 500-1000 ㎛, whereas the SBR-0 sample had the most distribution of larger than 1000 ㎛. The abrasion rates of SBR-0 sample were lower than those of the SBR-R sample for the CC and LAT100 abrasion tests, but the Lambourn abrasion test result showed the opposite trend. Addition of the resin influenced the abrasion behavior, however the effect varied depending on the type of abrasion tests.

The Mechanical Properties and Abrasion Behavior of Warp Knitted Fabrics for Footwear

  • Jeon, Youn-Hee;Jeong, Won-Young;Park, Jung-Woo;An, Seung-Kook
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.151-155
    • /
    • 2003
  • The abrasion behavior of three kinds of warp knitted fabrics, which are normally used for upper sole of footwear, was evaluated. We measured the changes of mechanical and structural properties of each sample as abrasion cycle increased. Each sample showed similar trends in compression and surface properties but there were significant differences in abrasion rate among the samples. The mechanical properties showed remarkable differences with directions. The frictional coefficient (MIU) of fabric surface increased at the beginning of abrasion and decreased as abrasion cycles increased. The weight and thickness of the fabric linearly decreased with abrasion cycles. The surface roughness (SMD) and the compressional resilience (RC) decreased as abrasion cycles increased while compressional energy (WC) increased.

Influence of Slip Angle on Abrasion Behavior of NR/BR Vulcanizates

  • Eunji Chae;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Abrasion tests of model tire tread compounds (NR and NR/BR blend compounds) were performed at different slip angles (1° and 7°) using a laboratory abrasion tester. The abrasion behavior was investigated by analyzing the worn surface and wear particles. The abrasion spacing formed on the specimen worn at the large slip angle of 7° was significantly narrower than that at the small slip angle of 1°, while the abrasion depth for the specimen worn at 7° was lower than that at 1°. The abrasion spacing and depth tended to be narrower and lower, respectively, as the BR content increased. The abrasion patterns were clearly visible on the outside of the specimen for the slip angle of 1° but not for 7°. The wear particles had a rough surface and there were numerous micro-bumps. It was found that the crosslink density affected the abrasion patterns and morphologies of the wear particles.

Abrasion Wear Behavior of Recycled Tungsten Carbide Reinforced Metal Matrix Composite (재생 초경합금 분말을 활용한 금속기지 복합재료의 Abrasion 마모거동)

  • Kang, Nam-Hyun;Chae, Hyun-Byung;Kim, Jun-Ki;Choi, Jong-Ha;Kim, Jeong-Han
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.850-854
    • /
    • 2003
  • The abrasion wear behavior on the hardfacing weld was investigated by performing abrasion wear, hardness, and microstructural tests. The gas metal arc(GMA) weld was produced by using the cored wire which was filled with the hard metal, i.e., the recycled tungsten carbide (WC) reinforced metal matrix composite. For 30% addition of the hard metal, the abrasion wear resistance was significantly improved comparing with that for 20% addition of the hard metal. Above 30% addition of the hard metal, however, there was no significant improvement of the wear resistance. The improvement of the wear resistance was due to the increased amount of eutectic carbides(W$_{6}$C) which was formed during GMA welding. For the weld in which the hard metal was added to 30-40%, an optimum level of abrasion wear resistance was performed.

Effect of Impact Energy on the Impact-Wear Properties of High Manganese Steels in Acidic Corrosive Conditions

  • Wang, Kai;Du, Xiao-Dong;Wu, Kai;Youn, Kuk-Tae;Lee, Chan Gyu;Koo, Bon Heun
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.362-369
    • /
    • 2008
  • The impact abrasion behavior of high manganese steel is investigated under three kinds of impact energy in acid hematite ore slurry by using a modified MLD-10 impact abrasion tester. Through the SEM observation of the worn surface and the optical metallographic analysis of the cross-sectional samples, the corrosive impact abrasion mechanisms of the steel under different impact energies are studied. In acid-hematite slurry, the variations of impact energies would result in synchronous transformation of the impact abrasion properties and mechanisms of the high manganese steel in the corrosive condition, as led different corrosive impact abrasion mechanism under different impact energies.

Thermal Behavior and Abrasion Properties of Glass Fiber Reinforced Nylon 12 Crosslinked by Electron Beam Irradiation (전자선 가교된 유리섬유 강화 나일론 12의 열적 거동 및 내마모 특성)

  • Shin, Bum-Sik;Jeun, Joon-Pyo;Kim, Hyun-Bin;Kang, Phil-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.30-34
    • /
    • 2011
  • In this study, the effects of the electron beam irradiation on the thermal behavior and the abrasion properties of the glass fiber reinforced nylon 12 was investigated. The electron beam irradiation was carried out over a range of irradiation dose from 100 to 600 kGy with additive crosslinking agents such as triallyl cyanurate (TAC), triallyl isocyanurate (TAIC) and trimethylolpropane trimethacrylate (TMPTMA) for enhancing the crosslinking effects. The gel contents were increased dramatically above 200 kGy. It was verified that the degree of crosslinking depends on the radiation dose. The decreases of the melting temperature and the area of endothermic peak were observed as increasing the absorbed dose in the results of DSC analysis. The enhanced thermal stability was confirmed by the increases of decomposition temperature by electron beam irradiation. Furthermore, the negative deviations of the abrasion loss and the abrasion coefficients confirmed the improvement of the abrasion properties of irradiated nylon 12, as evidenced by SEM observation on the abrasion surfaces. The addition of the crosslinking agents to nylon 12 during effectively improved the thermal behavior and the abrasion properties of nylon 12 by the electron beam irradiation.

Basic Experimental Study for Ice-Concrete Friction Behavior (빙-콘크리트 마찰 특성 평가를 위한 실험적 기초 연구)

  • Do, Youngjun;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.365-372
    • /
    • 2020
  • Ice induced abrasion is known as a critical problem in concrete gravity based offshore structures, which are mainly used in the arctic regions. Although many researches on ice abrasion have been conducted for the last several decades, there still are some difficulties in designing concrete gravity based offshore structures against abrasion problem because there is no standardized method yet due to the uncertain physics involved in. This paper presents an experimental study for the evaluation of concrete abrasion characteristics due to ice friction on concrete surface. For the test, a testing machine capable of abrasion and friction was designed and produced, and standardized procedure was proposed to produce ice specimen used for abrasion test. For the experiment, compressive strength of the ice specimen were explored through a static compression test. Then the friction test between ice specimen and concrete surface was performed and friction coefficients were derived using measured vertical and horizontal forces. Dependency of friction coefficients on some test parameters were studied and discussed as well.

The Study on the Slurry Wear Behavior of Rubber Vulcanizates (고무 소재의 슬러리 마모 거동에 관한 연구)

  • Chung, Kyung-Ho;Hong, Young-Keun;Park, Moon-Soo
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.70-77
    • /
    • 2011
  • A new piece of test equipment, the slurry wear tester (SWT), was proposed in this study to evaluate the wear behavior of rubber vulcanizate in environmental contact with slurry. Natural rubber (NR) and chloroprene rubber (CR) were chosen as the basic matrices to test the slurry wear. The fluids used to fill the chamber of the SWT were 35% HCl and NaCl solution. The Akron abrasion test was used for comparison with SWT. According to the results of the Akron abrasion test, CR vulcanizate abraded more rapidly than NR vulcanizate under same test condition. It was found that the hysteresis of rubber was key factor contribute to the wear behavior. However, the slurry wear rate of the NR and CR vulcanizates did not change significantly, even with changes in the concentration of acid and the immersion time in both HCl and NaCl solutions; the fluid decreased the friction between the abrasive paper and the specimen. It also reduced the heat generated from repeated deformation and wear debris at the surface of the SWT's abrasion arm. Thus, these phenomena affected the wear behavior of rubber vulcanizate and caused different results in the conventional Akron abrasion test. This outcome could have resulted in an incorrect analysis if the slurry wear behavior of the rubber vulcanizate was estimated by the conventional abrasion tests, which are operated under dry conditions.

Friction and Wear Behavior of Ceramics under Various Sliding Environments (세라믹 재료의 미끄럼 환경 변화에 따른 마찰 및 마멸 거동)

  • 장선태;이영제
    • Tribology and Lubricants
    • /
    • v.11 no.3
    • /
    • pp.11-23
    • /
    • 1995
  • The friction and wear behavior of $Al_{2}O_{3}$, SiC, and $Si_{3}N_{4}$ under the different sliding conditions were investigated. The cylinder-on-disc wear tester was used for a wear test method. Using the servo-motor, the sliding speed did not alternate due to the frictional forces. Three kinds of loads were selected to watch the variation of the wear rates and the frictional forces under a constant speed. Three kinds of sliding conditions were used to see the effects of the oxidation and the abrasion. The dominant wear mechanisms of $Al_{2}O_{3}$ were the abrasion and the formation of transfer layers. The abrasion has a great effect on the wear of SiC. The wear of $Si_{3}N_{4}$ was due to the asperity-failure and the oxidation. Also, the wear rate of each ceramic is shown to be related to the frictional power provided to the tribological system.

WEAR BEHAVIOR OF ATTACHMENTS FOR IMPLANT RETAINED OVERDENTURE ACCORDING TO MATERIAL IN VITRO

  • Lee Seok-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.6
    • /
    • pp.747-761
    • /
    • 2003
  • Statement of problem. The proper materials of attachments for implant retained overdenture are unknown, such as the correlation between retention and abrasion, as well as the types of materials that are suitable for patrix and for matrix individually. Purpose of this study. The aim of this study was to select a proper clinical attachment system for a successful treatment as well as patient satisfaction. Methods. Retention and abrasion of 14 commercial attachments were measured during 15,000 removes. Results. A retentive part (matrix) which requires elasticity has to be made of gold while the patrix part which does not require elasticity has to be made of titanium. This gold matrix / titanium patrix combination showed the most retentive force and the least retention loss.