• Title/Summary/Keyword: Aboveground

Search Result 305, Processing Time 0.03 seconds

Biomass and Nutrient Stocks of Tree Components by Stand Density in a Quercus glauca Plantation (종가시나무 조림지의 임분밀도에 따른 임목 바이오매스 및 양분축적량)

  • Choi, Bong-Jun;Baek, Gyeongwon;Jo, Chang-Gyu;Park, Seong-Wan;Yoo, Byung Oh;Jeong, Su-Young;Lee, Kwang Soo;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.294-302
    • /
    • 2016
  • This study was conducted to evaluate aboveground tree biomass and nutrient (C, N, P, K, Ca, and Mg) response of tree components by high (1,933 trees $ha^{-1}$) and low (1,200 tree $ha^{-1}$) stand densities in a 27-year-old Quercus glauca plantation. The study site was located in Goseong county, Gyeongsangnam-do, southern Korea. Total 12 trees (6 high and 6 low stand densities) were cut to develop allometric equations and to measure nutrient concentration of tree components. Stand density-specific allometric equations in the high and low stand densities were significant (P < 0.05) in tree components with diameter at breast height (DBH). Also, generalized allometric equations could be applied to estimate tree biomass regardless of the difference of stand density because of no significant effect on slope of stand density-specific allometric equations. Aboveground tree biomass estimated by the allometric equations was significantly higher in the high stand density (177 Mg $ha^{-1}$) than in the low stand density (114 Mg $ha^{-1}$). However, nutrient concentration of tree components was not significantly affected by the difference of stand density. Nutrient stocks in tree components were not significantly between the high stand density and the low stand density, except for the N and P stocks of stem wood. These results indicate that aboveground tree biomass could be significantly affected by stand density, but nutrient concentration among the tree components was not affected by the difference of stand density in a Quercus glauca plantation.

Parameterization and Application of a Forest Landscape Model by Using National Forest Inventory and Long Term Ecological Research Data (국가산림자원조사와 장기생태연구 자료를 활용한 산림경관모형의 모수화 및 적용성 평가)

  • Cho, Wonhee;Lim, Wontaek;Kim, Eun-Sook;Lim, Jong-Hwan;Ko, Dongwook W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • Forest landscape models (FLMs) can be used to investigate the complex interactions of various ecological processes and patterns, which makes them useful tools to evaluate how environmental and anthropogenic variables can influence forest ecosystems. However, due to the large spatio-temporal scales in FLMs studies, parameterization and validation can be extremely challenging when applying to new study areas. To address this issue, we focused on the parameterization and application of a spatially explicit forest landscape model, LANDIS-II, to Mt. Gyebang, South Korea, with the use of the National Forest Inventory (NFI) and long-term ecological research (LTER) site data. In this study, we present the followings for the biomass succession extension of LANDIS-II: 1) species-specific and spatial parameters estimation for the biomass succession extension of LANDIS-II, 2) calibration, and 3) application and validation for Mt. Gyebang. For the biomass succession extension, we selected 14 tree species, and parameterized ecoregion map, initial community map, species growth characteristics. We produced ecoregion map using elevation, aspect, and topographic wetness index based on digital elevation model. Initial community map was produced based on NFI and sub-alpine survey data. Tree species growth parameters, such as aboveground net primary production and maximum aboveground biomass, were estimated from PnET-II model based on species physiological factors and environmental variables. Literature data were used to estimate species physiological factors, such as FolN, SLWmax, HalfSat, growing temperature, and shade tolerance. For calibration and validation purposes, we compared species-specific aboveground biomass of model outputs and NFI and sub-alpine survey data and calculated coefficient of determination (R2) and root mean square error (RMSE). The final model performed very well, with 0. 98 R2 and 8. 9 RMSE. This study can serve as a foundation for the use of FLMs to other applications such as comparing alternative forest management scenarios and natural disturbance effects.

Environmental Controls on Net Ecosystem CO2 Exchange during a Rice Growing Season at a Rice-Barley Double Cropping Paddy Field in Gimje, Korea (김제 벼-보리 이모작 논에서 벼 재배기간 동안의 순생태계 CO2 교환량에 대한 환경요인 분석)

  • Shim, Kyo Moon;Min, Sung Hyun;Kim, Yong Seok;Jeong, Myung Pyo;Hwang, Hae;Kim, Seok Cheol;So, Kyu Ho
    • Journal of Climate Change Research
    • /
    • v.5 no.1
    • /
    • pp.71-81
    • /
    • 2014
  • Using the Eddy Covariance technique, we analyzed seasonal variation in net ecosystem $CO_2$ exchange (NEE) and investigated the effects of environmental factors and aboveground biomass of rice on the $CO_2$ fluxes in a rice-barley double cropping paddy field of Gimje, Korea. Quality control and gap-filling were conducted before this investigation of the effects. The results have been showed that NEE, gross primary production (GPP), and ecosystem respiration (Re) during the rice growing period were -215.6, 763.9, and $548.3g\;C\;m^{-2}$, respectively. Relation between NEE and net radiation (Rn) could be described by a quadratic equation, and about 65 % of variation in NEE was explained by changes in Rn. On the other hand, an exponential function relating Re to soil temperature accounted for approximately 43 % of variation in Re under the flooded condition of paddy field. Aboveground biomass showed significant linear relationships with NEE ($r^2=0.93$), GPP ($r^2=0.96$), and Re ($r^2=0.95$), respectively.

Early Effect of Environment-friendly Harvesting on the Dynamics of Organic Matter in a Japanese Larch (Larix leptolepis) Forest in Central Korea (중부지역 일본잎갈나무림의 친환경벌채가 산림 내 유기물 변화에 미치는 초기 영향)

  • Wang, Rui Jia;Kim, Dong Yeob
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.473-481
    • /
    • 2022
  • Environment-friendly harvesting is practiced to maintain ecosystem, landscape, and forest protection functions. The present study was conducted at Simgok-ri, Sinbuk-myeon, Pocheon, Gyeonngi-do, where a 41-50-year-old Japanese larch forest was harvested in an environment-friendly manner from 2017 to 2019. The dynamics of organic matter in this forest were investigated at three years after the harvest. Specifically, organic matter content was measured on the forest floor and in overstory biomass, litterfall, and soil up to 30 cm in depth from June 2020 to January 2021. Owing to the harvest, the amount of overstory biomass of the Japanese larch stands decreased from 142.22 to 44.20 t ha-1. On the forest floor, the amount of organic matter was 32.87 t ha-1 in the control plots and 23.34 t ha-1 in the harvest plots. Annual litterfall was 4.43 t ha-1 yr-1 in the control plots and 1.16 t ha-1 yr-1 in the harvest plots. Soil bulk density in the B horizon was 0.97 g cm-3 in the control plots and 1.06 g cm-3 i n the harvest plots. Soil organic matter content was 11.5% in the control plots and 12.8% in the harvest plots. The total amount of soil organic matter did not differ significantly between the control plots (245.21 t ha-1) and harvest plots (263.92 t ha-1), although the amount of soil organic matter tended to be higher in the harvest plots. The total amount of organic matter in the forest was estimated to be 406.48 t ha-1 in the control plots and 338.21 t ha-1 in the harvest plots. In the harvest plots, the ratio of aboveground organic matter decreased to 13.1% and soil organic matter increased to 78.0%, indicating that the distribution of organic matter changed significantly in these plots. Overall, the carbon accumulated in aboveground biomass was substantially reduced by environment-friendly harvesting, whereas the soil carbon level increased, which played a role in mitigating the reduction of system carbon in the forest. These results highlight one possible resolution for forest management in terms of coping with climate change. However, given that only three years of environment-friendly harvesting data were analyzed, further research on the dynamics of organic matter and tree growth is needed.

Effect of Cultivation Using Plastic-Film House on Yield and Quality of Ginseng in Paddy Field (논토양에서 비닐하우스를 이용한 재배방법이 인삼의 수량 및 품질에 미치는 영향)

  • Kim, Dong Won;Kim, Jong Yeob;You, Dong Hyun;Kim, Chang Su;Kim, Hee Jun;Park, Jong Suk;Kim, Jeong Man;Choi, Dong Chil;Oh, Nam Ki
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.3
    • /
    • pp.210-216
    • /
    • 2014
  • The average and maximum temperature were $29.5^{\circ}C$ and $33.2^{\circ}C$ at 2:00 p.m. respectively, in the plastic-film house covered with shade net, and both of temperature were lower $0.6^{\circ}C$ and $1.3^{\circ}C$ than those of conventional shade. Light transmittance was 14% in the plastic-film house, while 9.9% in conventional shade during growing season from May to October. Withering time of aboveground part was on October 3rd in conventional shade with 60% of withering leaf, while it was on November 10th with 3.7% of withering leaf in the plastic-film house, about 40 days longer survival. The main disease incidence were 15% of anthracnose, 17% of leaf spot, 5% of phytophthora blight and 3% of gray mold in the conventional shade, while 0 ~ 0.1% disease incidence and 95% of emergence rate in the plastic-film house. The growth in the aboveground and underground part of ginseng was totally better, particularly characteristics affecting yield such as root length, main root length and diameter in the plastic-film house. The fresh weight was increased by 128% compared to the conventional shade and harvested roots per $3.3m^2$ were 36 roots in the conventional shade and 58 roots in the plastic-film house and futhermore yield per $3.3m^2$ was increased by 216% compared to the conventional shade. As covering materials, the rice straw in the plastic-film house was excellent. The ginsenoside contents affecting the quality of ginseng were higher in the plastic-film house indicating 0.333% of Rg1, 0.672% of Rb1, 0.730% of Rc and rate of red rusty root was less than 4.0 ~ 6.1%. Above the results, the quality of ginseng grown in the plastic-film house covered with shade net was improved than that of the conventional shade.

Green Manuring Effect of Pure and Mixed Barley-Hairy Vetch on Rice Production (보리-헤어리베치 단파 및 혼파가 벼 수량에 미치는 영향)

  • Kim, Tae-Young;Kim, Song-Yeob;Alam, Faridul;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.268-272
    • /
    • 2013
  • BACKGROUND: The mixtures of legumes and non legumes can be an efficient tool to combine the benefit of the single species in the cover crop practice. However, there is a lack of information on how the species proportion may affect N accumulation and how this can influence the nitrogen use of subsequent rice production. METHODS AND RESULTS: In this study barley and hairy vetch was selected as a green manure. The pure stands or mixtures with different seeding ratios was tested on green manure N accumulation and its following rice cultivation. Total aboveground biomass and N accumulation of mixture were higher compared to that of pure barley and hairy vetch. Among the mixtures, the highest aboveground biomass (8.07 Mg/ha) and N accumulation (131 kg/ha) was observed in B75H25 (barley 75% + hairy vetch 25%). The N accumulation of the mixture ranged from 99 kg/ha to 131 kg/ha which was much higher than amount of recommended (90 kg/ha) for rice. All mixture (barley 75%+hairy vetch 25%, barley 50%+hairy vetch 50%, barley 25%+hairy vetch 50%) produced 7-8% more rice yield than the conventional cultivation (NPK). The rice yield of in barley monocrop was 4% less than that of NPK. COLCLUSION(S): Adopting mixtures of barley and hairy vetch could be efficient strategy for rice production as an alternative of nitrogen fertilizer.

Study on the Possibility of Occurrence of Apple Replant Disease in Kyungpook Region (경북지역(慶北地域)사과원(園)의 개식장해(改植障害) 발생가능성(發生可能性)에 관(關)한 연구(硏究))

  • Kim, Kyu Rae
    • Current Research on Agriculture and Life Sciences
    • /
    • v.11
    • /
    • pp.91-99
    • /
    • 1993
  • In order to clarify the possibility of occurrence of apple replant disease and the severity of it in Kyungbuk area, 23 apple orchard soils older than 20 years were collected and growth response of apple seedlings in the soil was tested by soil fumigation. Some factors concerned with apple replant disease in some cases were also checked. The results were as follows. 1. Plant height of apple seedlings was significantly increased in 6 apple orchards and up to 38% in a most conspicuous case by soil fumigation. 2. Fresh weight of aboveground part(except leaves), underground part and whole plant(except leaves) of apple seedlings was significantly increased in 10,4 and 9 apple orchards, respectively by soil fumigation. The response of soil fumigation was pronounced in fresh weight of aboveground part of apple seedlings, more than 50% increase in 5 apple orchards. 3. The effects of available copper and arsenic content in soil and soil nematodes population on the plant height and fresh weight of apple seedlings were not recognized as important factors causing apple replant disease. 4. Effect of soil PH on the occurrence of apple replant disease was not recognized.

  • PDF

Characteristics of Aboveground and Red Ginseng Quality of Polystem Ginseng(Panax gjnseng C.A. Meyer) (다경형(多莖型) 인삼(人蔘)의 지상부 생육 및 홍삼(紅蔘) 품질 특성)

  • Lee, Jong-Chul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.3
    • /
    • pp.255-260
    • /
    • 1996
  • This study was conducted to investigate the characteristics of aboveground plants and red ginseng of polystem ginseng in 6 years of age having two or more stems in a plant. Total leaf weight and area of polystem ginseng were larger, while its stem diameter, and the leaf weight and area of the big­gest stem in each plant were decreased with increase the stem numbers in a plant. The ratio of shoot weight to root weight in the polystem ginseng with three or more stems was higher than that in the monos­tem ginseng and the polystem ginseng with two stems, In ginseng plants with no more than 2 stems, there were positive correlations between root weight and total leaf weight, and leaf area, but not between leaf weight and area of the biggest stem. Inner cavity and inner white, limiting factors for redginseng quality grade, occurred more in tri-stem ginseng than mono- and di-stem one. Percentages of Heaven (1st grade) and Earth (2nd grade) red ginseng in tri-stem ginseng were decreased compared with mono stem and di-stem ginseng.

  • PDF

Temporal variation of ecosystem carbon pools along altitudinal gradient and slope: the case of Chilimo dry afromontane natural forest, Central Highlands of Ethiopia

  • Tesfaye, Mehari A.;Gardi, Oliver;Bekele, Tesfaye;Blaser, Jurgen
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.161-182
    • /
    • 2019
  • Quantifying the amount of carbon pools in forest ecosystems enables to understand about various carbon pools in the forest ecosystem. Therefore, this study was conducted in the Chilimo dry afromontane forest to estimate the amount of carbon stored. The natural forest was stratified into three forest patches based on species composition, diversity, and structure. A total of 50 permanent sample plots of 20 m × 20 m (400 ㎡ ) each were established, laid out on transects of altitudinal gradients with a distance of 100 m between plots. The plots were measured twice in 2012 and 2017. Tree, deadwood, mineral soil, forest floor, and stump data were collected in the main plots, while shrubs, saplings, herbaceous plants, and seedling data were sampled inside subplots. Soil organic carbon (SOC %) was analyzed following Walkely, while Black's procedure and bulk density were estimated following the procedure of Blake (Methods of soil analysis, 1965). Aboveground biomass was calculated using the equation of Chave et al. (Glob Chang Biol_20:3177-3190, 2014). Data analysis was made using RStudio software. To analyze equality of means, we used ANOVA for multiple comparisons among elevation classes at α = 0.05. The aboveground carbon of the natural forest ranged from 148.30 ± 115.02 for high altitude to 100.14 ± 39.93 for middle altitude, was highest at 151.35 ± 108.98 t C ha-1 for gentle slope, and was lowest at 88.01 ± 49.72 t C ha-1 for middle slope. The mean stump carbon density 2.33 ± 1.64 t C ha-1 was the highest for the middle slope, and 1.68 ± 1.21 t C ha-1 was the lowest for the steep slope range. The highest 1.44 ± 2.21 t C ha-1 deadwood carbon density was found under the middle slope range, and the lowest 0.21 ± 0.20 t C ha-1 was found under the lowest slope range. The SOCD up to 1 m depth was highest at 295.96 ± 80.45 t C ha-1 under the middle altitudinal gradient; however, it was lowest at 206.40 ± 65.59 t C ha-1 under the lower altitudinal gradient. The mean ecosystem carbon stock density of the sampled plots in natural forests ranged from 221.89 to 819.44 t C ha-1. There was a temporal variation in carbon pools along environmental and social factors. The highest carbon pool was contributed by SOC. We recommend forest carbon-related awareness creation for local people, and promotion of the local knowledge can be regarded as a possible option for sustainable forest management.

Above- and Below-ground Biomass and Energy Content of Quercus mongolica (신갈나무의 지상부와 지하부 바이오매스 및 에너지량)

  • Kwon, Ki-Cheol;Lee, Don-Koo
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Quercus mongolica is the most common hardwood species distributed in Korea. This study was conducted to investigate the biomass and energy content of the belowground biomass of Q. mongolica and to obtain the regression equation for estimating root biomass using the tree height and diameter at breast height (DBH). A total of 18 sample trees ranging 20 to 60 year-old were selected in the study sites. Tree height, DBH, age, and weight of stemwood, sapwood, heartwood, stembark, branch, leaf, and root were measured for total biomass. The highly positive correlation was shown between the biomass of most of variables of aboveground components and root biomass. The regression equation of the aboveground total biomass was $log\;W_A\;=\;1.469\;+\;0.992\;log\;D^2H\;(R^2 =0.99)$. The regression equation of the belowground biomass was $log\;W_R\;=\;1.527\;+\;0.808\;log\;D^2H\;(R^2\;=\;0.97)$. The mean energy contents of sapwood, heartwood, bark, leaf, and root were 19,594 J/g DW, 19,571 J/g DW, 19,999 J/g DW, 20,664 J/g DW, and 19,273 J/g DW, respectively. The results obtained from this study can be used to estimate biomass and energy content of belowground using easily measurable variables such as DBH and tree height ranging from 20 to 60-year-old Q. mongolica stands.

  • PDF