• Title/Summary/Keyword: Above-ground growth

Search Result 246, Processing Time 0.032 seconds

Impact of Smut (Sporisorium scitamineum) on Sugarcane's Above-Ground Growth and the Determinants of the Disease Intensity in the Ethiopian Sugarcane Plantations

  • Samuel Tegene;Habtamu Terefe;Esayas Tena
    • Research in Plant Disease
    • /
    • v.30 no.1
    • /
    • pp.34-49
    • /
    • 2024
  • The development of sustainable smut management techniques requires an understanding of the impacts of smut on sugarcane growth and the relationships between smut intensity and meteorological variables, varieties, and crop types. Thus, assessments were made with the objectives to 1) determine the effect of smut on the above-ground growth of sugarcane, and 2) quantify the association of smut with weather variables, varieties and crop types. The effect of smut on above-ground growth was assessed in six fields planted with NCo 334 (wider coverage) having 6 months of age in Fincha and Metehara fields in 2021. Data on above-ground growth were taken from 20 randomly selected smut-affected and healthy stools from each field. Besides, 6 years' data (2015 to 2021) on the numbers of smut-affected stools and smut whips of 79 fields were collected. Furthermore, 10 years' (2011 to 2021) weather data were acquired from the sugar plantations. The results demonstrated reduction in the above-ground growth of sugarcane in the range of 18.39% and 73.42% due to smut. In addition, weather variables explained about 68.48% and 66.58% of the variability in the number of smut-affected stools and whips respectively. Smut intensity increased with crop types for susceptible varieties. The tight association between the smut epidemic and crop types, varieties, and weather, implied that these parameters must be carefully considered in management decisions. Continuous monitoring of smut disease, meteorological variables, varieties, and crop types in all the sugarcane plantations could be done as a part of integrated smut management in the future.

A Correlation between Growth Factors and Meteorological Factors by Growing Season of Onion (양파의 생육시기별 생육요인과 기상요인 간의 관계 탐색)

  • Kim, Jaehwi;Choi, Seong-cheon;Kim, Junki;Seo, Hong-Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • Onions are a representative produce that requires supply-demand control measures due to large fluctuations in production and price by growing season. Accurate forecasts of crop production can improve the effectiveness of such measures. However, it is challenging to obtain accurate estimates of crop productivity for onions because they are mainly grown on the open fields. The objective of this study was to perform the empirical analysis of the relationship between factors for crop growth and meteorological conditions, which can support the development of models to predict crop growth and production. The growth survey data were collected from open fields. The survey data included the weight of above ground organs as well as that of the bulbs. The estimates of meteorological data were also compiled for the given fields. Correlation analysis between these factors was performed. The random forest was also used to compare the importance of the meteorological factors by the growth stage. Our results indicated that insolation in early March had a positive effect on the growth of the above-ground. There was a negative correlation between precipitation and the growth of the above-ground at the end of March although it has been suggested that drought can deter the growth of onion. The negative effects of precipitation and daylight hours on the growth of the above-ground and under-ground were significant during the harvest period. These meteorological factors identified by growth stage can be used to develop models for onion growth and production forecast.

Growth Rate and Annual Production of Halo-phyte (Suaeda japonica) on Tidal Mud-flat, Southern Part of Ganghwa-Isl, Korea (강화 남부 조간대에 서식하는 칠면초(Suaeda japonica)의 연간 생장 및 생산 양상)

  • Hwang, Ji-won;Lee, Kyun-Woo;Park, Heung-sik
    • Ocean and Polar Research
    • /
    • v.44 no.2
    • /
    • pp.127-137
    • /
    • 2022
  • This study examined the growth pattern and environmental factors affecting the growth of the halophyte, Suaeda japonica, which is prevalent on tidal flats in the west coast of Korea in order to calculate annual carbon production. Quantitative sampling was conducted every month for three years from 2018 to 2020 on salt marshes located on the southern coast of Ganghwa Island. In terms of annual density affected by the germination rate at first period, especially when air temperature for winter time was constantly below 0℃ for long periods of time, germination decreased and precipitation in summer also exerted an influence. In terms of annual growth with regard to length, the part below the ground grew rapidly in the beginning after budding, while the part above ground grew at a relatively steady rate at all times. With regard to biomass, the part below the ground also increased from April in a manner similar to length growth, but decreased drastically from September with leaves falling off and water loss occurring. The part above ground showed a rapid increase from the beginning of the rainy season. Size-frequency distribution revealed broader patterns after the rainy season as individual growth varied, but from September, it stopped at all year. High growth rates were recorded in the initial phase of growth after budding and growth was rapid, but growth declined in summer when biomass increased. The annual mean production based on growth rate was calculated at 352 gDWt/m2/yr, and the highest production was 519 gDWt/m2/yr in 2018, but it has decreased since 2019. Annual carbon production was at calculated 143.41 gC/m2/yr for Suaeda japonica in the vicinity of the southern coast of Ganghwa Island.

Effects of Several Soil Medias on the Plant Growth in Artificial Planting Ground (인공지반용 식재용토의 배합이 목본식물의 생장에 미치는 영향)

  • Lee, Eun Yeob;Moon, Seok Ki
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.18-24
    • /
    • 1999
  • This study was aimed to develope appropriate soil media for the growth of Rhododendron hybrid $J_{ASANHONG}$ on the artificial ground five types of soil media was tested such as "sandy loam-general soil (T1)", "vermiculite-artificial soil (T5)", "sandy loam 50% + vermiculite 30% + sand 20% (improved of soil 2-T2)", "sandy loam 50% + carbonized rice hust 30% + sand 20% (improved of soil 3-T3)", "sandy loam 50% + humus sawdust 30% + sand 20% (improved of soil 4-T4)". The result of the research are as follows. 1. Among the type of soil media, the sandy loam(T1) soil type gave the worst effects on growth of above ground parts(height, No. of leaf, width of leaf, No. of flowering, dry weight of upper parts) and under ground parts(dry weight of roots). 2. Vermiculite(T5) showed the highest root growth(dry weight of roots). it seemed to be caused high saturated hydraulic conductivity and porosity. As a result, there is much available space for enabling the root spreads. 3. "sandy loam 50% + vermiculite 30% + sand 20%(improved of soil 2-T2)", "sandy loam 50% + carbonized rice hust 30% + sand 20%(improved of soil 3-T3)" showed good effects on growth of above ground parts and under ground parts compared with sandy 10am(T1) 4. "sandy loam 50% + humus sawdust 30% + sand 20% + (improved of soil 4-T4)" showed the highest effects on growth of above ground parts.

  • PDF

Estimation of the relationship between below-ground root and above-ground canopy development by measuring dynamic change of soil ammonium-N concentration in rice

  • Fushimi, Erina;Yoshida, Hiroe;Tokida, Takeshi;Nakagawa, Hiroshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.183-183
    • /
    • 2017
  • In the early part of rice growth, root volume primarily limits the amount of plant-accessible nitrogen (N). Therefore, knowledge of the root development is important for modeling N uptake of rice. The timing when the volume of rhizosphere cover the whole soil is also important to carry out timely top dressing. However, information about initial root expansion and associated N uptake is limited due to intrinsic technical difficulties in assessing below-ground processes. Some studies, however, showed a close relationship between below-ground root and above-ground leaf development, suggesting a possibility that above-ground attributes could serve as surrogates for the root processes. In this study, we investigated the relationship between below-ground and above-ground development of rice. Field experiments were conducted where we cultivated Koshihikari (a leading cultivar in Japan) for four different cropping schedules in 2012. In 2016, Gimbozu (HEG4) and three flowering time mutant lines of Gimbozu (X61 (se13), HS276 (ef7), DMG9 (se13, ef7)) were examined for a single season. Experiments were performed with three replications in a completely randomized design. We monitored ammonium-N concentration ([NH4+-N]) in soil solution by repeatedly taking samples from a porous tubing (10-cm long) vertically inserted at the most distant point from surrounding rice hills. Samples were taken in triplicate (= triplicate tubes) and every three days from transplanting in each experimental unit. For above-ground attributes, leaf area index (LAI) was measured in 2012, whereas soil coverage ratio was estimated by image processing in 2016. Results showed that [NH4+-N] increased gradually after transplanting and then rapidly decreased from a certain day. This distinct drop in [NH4+-N] informed us the timing at which the rice root system reached the point of porous tubing and thus essentially covered the whole soil volume. The LAI at the dropping point was about 0.43 regardless of the cropping schedules in 2012 experiment. In 2016, the coverage ratio at the N dropping point was within the range of 0.12 to 0.19 for four genotypes having different growth durations. In addition, the coverage ratios at seven weeks after the transplanting showed a good correspondence to LAI across the four genotypes. We therefore conclude that both LAI and coverage ratio may serve as robust indicators for root development and might be useful to estimate the timing when the root system fully cover the soil volume. Results obtained here will also contribute to develop models that can predict not only above-ground canopy development but also associated below-ground processes.

  • PDF

Effects of Different Root Restriction Media on Root Activity and Seedling Quality and Early Growth Parameters of Runner Plantlets of Strawberry After Transplanting

  • Park, Gab Soon
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.337-343
    • /
    • 2016
  • The present study aimed to determine the influence of various root restriction media on seedling quality and early growth of strawberry after transplanting. The root activity of the seedlings, measured 20 days after fixation, was considerably higher (0.096, 0.090, and $0.063mg{\cdot}g^{-1}{\cdot}h^{-1}$ at 420, 450, and 480 nm, respectively) in expanded rice hull (ERH) treatment than in the sandy loam and loamy sand treatments. The volumetric water content (VWC) of the root media tested across 3 irrigation regimes (15 d, 30 d, 45 d) in the nursery field was highest in sandy loam (65.0-66.8%), followed by 59.4-61.3% in loamy sand and 38.6-45.3% in ERH. When growth parameters of runner plantlets were compared, ERH treatment was found to result in the highest crown thickness and fresh weights of root and above-ground parts. This had a favorable influence on above-ground tissue growth after transplanting to plastic house soil. As mentioned above, ERH treatment resulted in the highest seedling quality and early growth after transplanting. The results of this study would serve as useful on-site data for the production of high-quality strawberry seedlings.

Studies on Salinity and Growth of Rice at Seosan Reclaimed Land (서산 간척지의 염도와 벼의 생육에 관한 연구)

  • 이희선;김옥봉
    • The Korean Journal of Ecology
    • /
    • v.20 no.5
    • /
    • pp.367-373
    • /
    • 1997
  • The effects of salinity on the growth and production of rice were studied at Seosan reclaimed land from July to October, 1995. The plant height, the number of living aleaves, dead leaves and total leaves, the number of the grains and the dry weight of the grains per individual, and the dry weight of above the ground in $25cm{\times}25cm$ quadrat were investigated on 5 plots whers were different salinity. The plant height, the number of living leaves and total leaves and the number of grains and the dry weight of grains per individual, and the dry weight of above the ground decreased as the salinity of water increase and the number of dead leaves of rice increased as the salinity of water decrease. The effect of salinity on the reproductive production is severer than the vegetative production. Because of the salinity, the growth and the production of the rice at Seosan reclaimed land are worse than the normal rice field.

  • PDF

Growth Characteristics as Affected by Shading and Pruning Height of Above-ground Part in Two-year Old Gypsophila paniculata during Over-summer (2년생 안개초 여름철 차광 및 지상부 절단 높이에 따른 생육반응)

  • Cheong, Dong-Chun;Lim, Hoi-Chun;Kim, Kab-Cheol;Song, Young-Ju;Kim, Jeong-Man
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.3
    • /
    • pp.185-189
    • /
    • 2009
  • This study was carried out to investigate the effect of shading (50% or not) and pruning height (3cm, 6cm, and 9cm) of remained above-ground plant part on shoot emergence aspect, mortality rate, flowering and cut flower characteristics of two years old Gypsophila paniculata plants. Days to shoot emergence (80%) advanced, emerged shoot number increased and mortality rate surveyed on late October decreased in 50% shading treatment. In addition to, mortality rate decreased, as above-ground plant part was highly pruned. Blooming was earlier with highly pruning the remained above-ground pan and under non-shading condition than shading. Growth traits such flower stalk length, primary branches number, stem diameter, and cut flower yield were the best and also non-particulate rate and rosette formation rate were the lowest in pruning height of 9cm under non-shading condition.

Effects of environmental factors on the growth response of above- and below-ground parts of Mankyua chejuense, endangered endemic plant to Jeju province, in Korea

  • Kim, Hae-Ran;Shin, Jeong-Hoon;Jeong, Heon-Mo;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.37 no.2
    • /
    • pp.61-67
    • /
    • 2014
  • Mankyua chejuense is a native endangered plant distributed only in Gotzawal, a forested wetland, in Jeju Province, Korea. In order to determine the optimal environmental conditions for the growth and development of M. chejuense, we investigated the above- and below-ground growth responses and survival rate to various soil texture (sand and clay), water regimes (flooding and non-flooding), and $CO_2+T$ (ambient and elevated) conditions. All of the treatments had significant effects on aboveground growth parameters, while only the water regime and $CO_2+T$ treatments influenced belowground growth. The survival rate of M. chejuense was about twice higher under the sand, non-flooding and elevated $CO_2+T$ conditions than clay, flooding and ambient $CO_2+T$ conditions. These results indicate that M. chejuense grows in well-drained sandy soil conditions and elevated $CO_2$ concentration and temperature situations. Thus, there is a need to maintain M. chejuense under constant non-flooding soil conditions by implementing appropriate soil drainage strategies.

Impact of Pruning Intensity on Tree Growth and Closure of Pruning Wounds of Pinus strobus L. and Acer palmatum Thunb.

  • Lee, Kyu Hwa;Lee, Kyung Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.584-592
    • /
    • 2009
  • The objective of this study was to examine the impact of pruning intensity on the vigor and cambial growth of the treated trees, and on the closure of pruning wounds for one year after pruning treatment. Two tree species, Pinus strobus and Acer palmatum, planted broadly in the urban forest of Korea were selected for the experiment. Intensity of pruning, which was estimated by proportion of removed branches, was categorized into five levels with about 10% intervals from lowest 8% up to 46%. Following parameters were examined; cambial electrical resistance (CER) and the cambial growth of trunk at 30 cm above the ground for the years before and after pruning, the cambial growth of stem at 1.5 cm above the branch bark ridge (BBR) of the pruned branch, and closure of pruning wound for one year after pruning. Tree vigor inferred from CER had a tendency to be weakened as pruning intensity increased in P. strobus, while that of A. palmatum was not affected. The trunk growth decreased significantly when the pruning intensity was higher than 30% in both species. The closure of individual pruning wound was related more to the cambial growth of stem at 1.5 cm above BBR than to the pruning intensity. Comparing the closure rate of pruning wound for one year, P. strobus with 72.1% was faster than A. palmatum with 39.3%, which corresponded with the rate of cambial growth of the two species.