• Title/Summary/Keyword: Abnormal voltage

Search Result 193, Processing Time 0.026 seconds

Base data establishment of suitability for Toughened Glass Stem Insulator applied in the high speed catenary system (고속전차선로 유리애자 현장 적합성 기반 구축 연구)

  • Jeon, Yong-Joo;Ryu, Young-Tae;Lee, Tae-Hoon;Park, Ki-Bum;Lee, Gi-Chun;Kim, Sun-Goo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.140-143
    • /
    • 2008
  • The Operation of high speed train in year 2004 bring about a great change in railroad industry. Especially in railroad construction field we have acquired great Know-how. And up to now we are building up operation skills. But the high speed train system are totally imported, so it is necessary to investigate some of the equipment based on our own environment. In case of Toughened Glass Stem Insulator, we don't have any application case in domestic and limited in abroad. So there must be some characteristic estimation. This paper introduces estimation methode in three different field. First electrical field, Second physical field and finally environment circumstance. In Electrical field, amplitude and number of time for abnormal peak voltage data are collected. And in physical field case, amplitude and trend of vibration in to the insulator are examined. And I circumstance case, possibility of flying gravel and ice clod are investigated. Through this basic data, suitability for Toughened Glass Stem Insulator using in domestic will be accumulated and estimated.

  • PDF

Root cause analysis of the abnormal wear on diesel engine crankpin and lubricant contamination (윤활유 오염과 디젤엔진의 크랭크핀 이상마모에 대한 원인 규명)

  • Seo, Jeongwoo;Park, Donghee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.854-867
    • /
    • 2014
  • In the circumstance that high oil price state is continued over the world, the investment in crude oil development by oil major is a trend of increasing. Recently the number of delivered drill-ship for 5 years has been sharply increased all over the world and about twice than that of past 30 years. As addition to the increase of the drill-ship demand, the operation of drill-ships which is delivered recently is about 3,000 meters, ultra deep sea, on average and the work area is expending. Accordingly the drilling system including the size and length of pipe for drilling has been bigger and bigger and the power supply equipment for operation system also has large capacity. Unlike merchant vessel, high power and high voltage of diesel generators are required for drill-ship for which the demand for V-type 320 bore of diesel generator has increased. It is on the raised that the importance of lubrication oil cleaning for diesel generator on drill-ship which has longer time for construction, and also long term low load operation is unavoidable during commissioning of equipments. Recently it was reported that engine crankpin was damaged due to the hard contact caused by the abnormal wear down(Cam wear) on crankpin and bearing. The same pattern of wear down was found through the inspection on series vessels and the other vessel under commissioning. The purpose of this paper is to analyze of the wear mechanism based on the observation and theories and objective research from actual cases and to prepare the counter measures to avoid foreseeable damage when the lubricating oil is not properly cleaned.

Enhancement of Density and Piezoelectric Properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 Lead-Free Piezoelectric Ceramics through Two-Step Sintering Method (Two-Step 소결법을 통한 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 무연 압전 세라믹의 밀도 및 압전 특성 향상)

  • Il-Ryeol Yoo;Sang-Hyun Park;Seong-Hui Choi;Kyung-Hoon Cho
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.116-124
    • /
    • 2024
  • In this study, we investigated the microstructure and piezoelectric properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 (KNNS-BNKZ) ceramics based on one-step and two-step sintering processes. One-step sintering led to significant abnormal grain (AG) growth at temperatures above 1,085 ℃. With increasing sintering temperature, piezoelectric and dielectric properties were enhanced, resulting in a high d33 = 506 pC/N for one-step specimen sintered at 1,100 ℃ (one-step 1,100 ℃ specimen). However, for one-step 1,115 ℃ specimen, a slight decrease in d33 was observed, emphasizing the importance of a high tetragonal (T) phase fraction for superior piezoelectric properties. Achieving a relative density above 84 % for samples sintered by the one-step sintering process was challenging. Conversely, two-step sintering significantly improved the relative density of KNNS-BNKZ ceramics up to 96 %, attributed to the control of AG nucleation in the first step and grain growth rate control in the second step. The quantity of AG nucleation was affected by the duration of the first step, determining the final microstructure. Despite having a lower T phase fraction than that of the one-step 1,100 ℃ specimen, the two-step specimen exhibited higher piezoelectric coefficients (d33 = 574 pC/N and kp = 0.5) than those of the one-step 1,100 ℃ specimen due to its higher relative density. Performance evaluation of magnetoelectric composite devices composed of one-step and two-step specimens showed that despite having a higher g33, the magnetoelectric composite with the one-step 1,100 ℃ specimen exhibited the lowest magnetoelectric voltage coefficient, due to its lowest kp. This study highlights the essential role of phase fraction and relative density in enhancing the performance of piezoelectric materials and devices, showcasing the effectiveness of the two-step sintering process for controlling the microstructure of ceramic materials containing volatile elements.

A Study on the Safety Grounding for Prevention of Electric Shock Hazard in Construction of Industrial Plant in Maritime Landfill Area (해상 매립 지역 산업 플랜트 건설 시 감전 재해 예방을 위한 안전 접지에 관한 연구)

  • Kim, Hong-Yong;Jang, Ung-Burm
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.305-312
    • /
    • 2017
  • In our society, the advanced, advanced, and information industries have continued to grow and now live in the era of the fourth industrial revolution. As the industry develops, the load of the users has also increased so much that it is deepened by the energy shortage phenomenon and the construction of additional energy facilities is required. Therefore, energy plant construction work is being actively carried out in the coastal area. In particular, it is common to build a plant in the ground by filling the coast with soil in other regions, reflecting the fact that Korea is lacking in the country when constructing power plants, gas and petrochemical plants. Current domestic grounding designs are designed or constructed to suit only the use of grounding resistors based on the electrical equipment design technical standards. However, in the case of a plant facility constructed in the untested buried soil, when the lightning current and the abnormal current are inputted, the facility operator or the user due to the elevation of the ground potential is seriously exposed to the risk of electric shock disaster. In this paper, we analyze the ground resistivity of the landfilled soil and use a computer program (CDEGS) based on KS C IEC 61936-1, We analyze the contact voltage and stratification voltage and propose a grounding design optimized for plant installation.

A Study on the Development of Harmonic Limit Device for Stabilizing Main Circuit Equipment of Train (열차운행 안정화를 위한 주회로 기기의 고조파 제한장치 개발에 관한 연구)

  • Kim, Sung Joon;Chae, Eun Kyung;Kang, Jeong Won
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.6
    • /
    • pp.853-861
    • /
    • 2018
  • This paper proposes the application of harmonic constraints to address the problems caused by abnormal voltage increases when electric railway vehicles are running. The AC line that supplies the train with power during operation is used to provide electricity of 25kV/60 Hz, but gradually the size and frequency of harmonics involved in the line are varied with the technological evolution of the railroad vehicle electrical equipment. An increase in heat losses due to the failure of the instrument transformer (PT), the main circuit device, which is a serious problem with the recent train safety operation, or to the main displacement voltage. When high frequency components are introduced through low frequency Transformers of the main circuit device, the high intensity of the components is caused by the high intensity of the core and the current flow of the parasitic core is increased, thus generating heat. To solve this problem, the recent adjustment of the sequence has applied artificial NOTCH OFF of the power converter. However, the method of receiving and controlling the OFF signal operates by interaction between the ground and the vehicle's devices, thus it is invalid in the event of failure, and an actual accident is occurring. Therefore, the harmonic currents were required to prevent possible flow of harmonics, and conducted a study to prevent accidental occurrence of train accidents and to verify feasibility of the device through the simulations of the train's experimental analysis and the simulations of the train for safe operation.

The Effects of Corner Transistors in STI-isolated SOI MOSFETs

  • Cho, Seong-Jae;Kim, Tae-Hun;Park, Il-Han;Jeong, Yong-Sang;Lee, Jong-Duk;Shin, Hyung-Cheol;Park, Byung-Gook
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.615-618
    • /
    • 2005
  • In this work, the effects of corner transistors in SOI MOSFETs were investigated. We fabricated SOI MOSFETs with various widths and a fixed length and characterized them. The SOI thickness was $4000{\AA}$ and the buried oxide(BOX) thickness was $4000{\AA}$. The isolation of active region was simply done by silicon etching and TEOS sidewall formation. Several undesirable characteristics have been reported for LOCOS isolation in fabrication on SOI wafers so far. Although we used an STI-like process instead of LOCOS, there were still a couple of abnormal phenomena such as kinks and double humps in drain current. Above all, we investigated the location of the parasitic transistors and found that they were at the corners of the SOI in width direction by high-resolution SEM inspection. It turned out that their characteristics are strongly dependent on the channel width. We made a contact pad through which we can control the body potential and figured out the dependency of operation on the body potential. The double humps became more prominent as the body bias went more negative until the full depletion of the channel where the threshold voltage shift did not occur any more. Through these works, we could get insights on the process that can reduce the effects of corner transistors in SOI MOSFETs, and several possible solutions are suggested at the end.

  • PDF

Effects of Contact Resistance on temperature Rise in a MCCB (접촉저항이 배선용 차단기 내부 온도상승에 미치는 영향)

  • 박성규;이종철;김윤제
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.12-19
    • /
    • 2004
  • A Molded Case Circuit Breaker (MCCB) is an electric control device to interrupt the abnormal currents which result from the over-loads or short-circuits. Its malfunction will result in severe accidents. In the development of the MCCB, higher current-rating and improved thermal performance become more and more important in providing the safe function and reliability for the modern devices requiring small scale and high performance. It is also very important to consider the factors of temperature rise in the design of MCCB. The major reasons of temperature rise in the MCCB result from the resistances, which are come from the connection and contact surfaces. These resistances are influenced by current, time, configuration of contact surfaces and applied voltage. In order to predict the temperature distribution inside MCCB, we have simulated the model with some assumptions and simplifications, using commercial code ICEPAK. To verify the results of temperature field analysis, the numerical results are compared with experimental ones for the same model. The results show a good agreement with actual temperature rise obtained by experiments.

Effect of Nickel addition in DC arc test of Cu-W electrode (Cu-W 전극의 DC Arc 시험에 있어서 Nickel 첨가 영향)

  • Kim, Bong-Seo;Chung, Hyeon-Wook;Lee, Hee-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.11-14
    • /
    • 2003
  • Sintered Cu-W has been used for the electrode of GIS for interrupting the abnormal current. In this study the effect of Ni addition in Cu-W electrode was investigated. Cu-W electrodes used contains 0.1~0.2wt% Ni and were conducted the experiments which was attacked by DC arc test (70V-70A) for 300 times periodically. As the contents of Ni in Cu-W electrode increase, the hardness and electrical conductivity were decreased. The weight change ($\Delta$mg) of electrode after DC arc test increased with increasing Ni contents and test times. The hardness and electrical conductivity of electrode after DC arc test were decreased compared with non-arc affected electrode, which was owing to the defects near surface of electrode and degradation by arc heat. It was considered that Cu in the Cu-W electrode was scattered to all directions by arc heat, therefore, the electrodes were damaged and deformed in the surface and cross-section of electrode. It is difficult to estimate directly the characteristics of Cu-W electrode for GIS related with high voltage and current from the results of DC arc test conducted in this study. However, the results of the effect of Ni addition in Cu-W electrode could be applied for the research of electrode for GIS.

  • PDF

Design of Fault Diagnostic and Fault Tolerant System for Induction Motors with Redundant Controller Area Network

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.371-374
    • /
    • 2004
  • Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Preventive maintenance of induction motors has been a topic great interest to industry because of their wide range application of industry. Since the use of mechanical sensors, such as vibration probes, strain gauges, and accelerometers is often impractical, the motor current signature analysis (MACA) techniques have gained murk popularity as diagnostic tool. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is independent of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current, voltage, temperatures, vibration and speed of the motor. The DSPs share information from each sensor or DSP through DPRAM with hardware implemented semaphore. And it communicates the motor status through field bus (CAN, RS485). From the designed system, we get primitive sensors data for the case of normal condition and two abnormal conditions of 3 phase induction motor control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using CAN protocol.

  • PDF

Unmanned Water Treatment System Based on Five Senses Technology to Cope with Overloading of Customized Smart Water Grid Machines (스마트워터그리드 맞춤형 기계과부하시 오감기술을 이용한 무인 수처리 시스템에 관한 연구)

  • Kim, Jae-Yeol;You, Kwan-Jong;Jung, Yoon-Soo;Ahn, Tae-Hyoung;Lee, Hak-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.69-80
    • /
    • 2017
  • In or To use, manage, and preserve sustainable water resources for the current and future generations amid the threat of abnormal climate, it is necessary to establish a smart water grid system, the next-generation intelligent water management system. In this study, sensors, which make use of the five senses to watch, listen, and detect machine vibration, bearing temperature, machine operation sounds, current, voltage, and other symptoms that cannot be verified when the irrigation facilities are running, are used to establish various decision-making criteria appropriate to on-site situations. Based on such criteria, the unmanned conditions in the facilities were verified and analyzed. Existing technologies require on-site workers to check any defects caused by overloading of machines, which is the biggest constraining factor in the application of an unmanned control system for irrigation facilities. The new technology proposed in this study, on the other hand, allows for the unmanned analysis of the existence of machine vibration. This controls the decision-making process of any defect based on the analysis results, and necessary measures are taken automatically, resulting in improved reliability of the unmanned automation.