• 제목/요약/키워드: Abnormal detection

Search Result 919, Processing Time 0.033 seconds

Study of The Abnormal Traffic Detection Technique Using Forecasting Model Based Trend Model (추세 모형 기반의 예측 모델을 이용한 비정상 트래픽 탐지 방법에 관한 연구)

  • Jang, Sang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5256-5262
    • /
    • 2014
  • Recently, Distributed Denial of Service (DDoS) attacks, such as spreading malicious code, cyber-terrorism, have occurred in government agencies, the press and the financial sector. DDoS attacks are the simplest Internet-based infringement attacks techniques that have fatal consequences. DDoS attacks have caused bandwidth consumption at the network layer. These attacks are difficult to detect defend against because the attack packets are not significantly different from normal traffic. Abnormal traffic is threatening the stability of the network. Therefore, the abnormal traffic by generating indications will need to be detected in advance. This study examined the abnormal traffic detection technique using a forecasting model-based trend model.

Multimodal Image Fusion with Human Pose for Illumination-Robust Detection of Human Abnormal Behaviors (조명을 위한 인간 자세와 다중 모드 이미지 융합 - 인간의 이상 행동에 대한 강력한 탐지)

  • Cuong H. Tran;Seong G. Kong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.637-640
    • /
    • 2023
  • This paper presents multimodal image fusion with human pose for detecting abnormal human behaviors in low illumination conditions. Detecting human behaviors in low illumination conditions is challenging due to its limited visibility of the objects of interest in the scene. Multimodal image fusion simultaneously combines visual information in the visible spectrum and thermal radiation information in the long-wave infrared spectrum. We propose an abnormal event detection scheme based on the multimodal fused image and the human poses using the keypoints to characterize the action of the human body. Our method assumes that human behaviors are well correlated to body keypoints such as shoulders, elbows, wrists, hips. In detail, we extracted the human keypoint coordinates from human targets in multimodal fused videos. The coordinate values are used as inputs to train a multilayer perceptron network to classify human behaviors as normal or abnormal. Our experiment demonstrates a significant result on multimodal imaging dataset. The proposed model can capture the complex distribution pattern for both normal and abnormal behaviors.

Research on Data Tuning Methods to Improve the Anomaly Detection Performance of Industrial Control Systems (산업제어시스템의 이상 탐지 성능 개선을 위한 데이터 보정 방안 연구)

  • JUN, SANGSO;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.4
    • /
    • pp.691-708
    • /
    • 2022
  • As the technology of machine learning and deep learning became common, it began to be applied to research on anomaly(abnormal) detection of industrial control systems. In Korea, the HAI dataset was developed and published to activate artificial intelligence research for abnormal detection of industrial control systems, and an AI contest for detecting industrial control system security threats is being conducted. Most of the anomaly detection studies have been to create a learning model with improved performance through the ensemble model method, which is applied either by modifying the existing deep learning algorithm or by applying it together with other algorithms. In this study, a study was conducted to improve the performance of anomaly detection with a post-processing method that detects abnormal data and corrects the labeling results, rather than the learning algorithm and data pre-processing process. Results It was confirmed that the results were improved by about 10% or more compared to the anomaly detection performance of the existing model.

Abnormal Human Activity Recognition System Based on CNN For Elderly Home Care (노인 홈 케어를위한 CNN 기반의 비정상 인간 활동 인식 시스템)

  • Valavi, Arezoo;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.542-544
    • /
    • 2019
  • Changes in a person's health affect one's lifestyle and work activities. According to the World Health Organization (WHO), abnormal activity is growing faster in people aged 60 or more than any other age group in almost every country. This trend steadily continues and expected to increase further in the near future. Abnormal activity put these people at high risk of expected incidents since most of these people live alone. Human abnormal activity analysis is a challenging, useful and interesting problem among the researchers and its particularly crucial task in life and health care areas. In this paper, we discuss the problem of abnormal activities of old people lives alone at home. We propose Convolutional Neural Network (CNN) based model to detect the abnormal behaviors of elderlies by utilizing six simulated action data from daily life actions.

A Study of Video-Based Abnormal Behavior Recognition Model Using Deep Learning

  • Lee, Jiyoo;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.115-119
    • /
    • 2020
  • Recently, CCTV installations are rapidly increasing in the public and private sectors to prevent various crimes. In accordance with the increasing number of CCTVs, video-based abnormal behavior detection in control systems is one of the key technologies for safety. This is because it is difficult for the surveillance personnel who control multiple CCTVs to manually monitor all abnormal behaviors in the video. In order to solve this problem, research to recognize abnormal behavior using deep learning is being actively conducted. In this paper, we propose a model for detecting abnormal behavior based on the deep learning model that is currently widely used. Based on the abnormal behavior video data provided by AI Hub, we performed a comparative experiment to detect anomalous behavior through violence learning and fainting in videos using 2D CNN-LSTM, 3D CNN, and I3D models. We hope that the experimental results of this abnormal behavior learning model will be helpful in developing intelligent CCTV.

Design and Evaluation of a Rough Set Based Anomaly Detection Scheme Considering the Age of User Profiles

  • Bae, Ihn-Han
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.12
    • /
    • pp.1726-1732
    • /
    • 2007
  • The rapid proliferation of wireless networks and mobile computing applications has changed the landscape of network security. Anomaly detection is a pattern recognition task whose goal is to report the occurrence of abnormal or unknown behavior in a given system being monitored. This paper presents an efficient rough set based anomaly detection method that can effectively identify a group of especially harmful internal attackers - masqueraders in cellular mobile networks. Our scheme uses the trace data of wireless application layer by a user as feature value. Based on this, the used pattern of a mobile's user can be captured by rough sets, and the abnormal behavior of the mobile can be also detected effectively by applying a roughness membership function with the age of the user profile. The performance of the proposed scheme is evaluated by using a simulation. Simulation results demonstrate that the anomalies are well detected by the proposed scheme that considers the age of user profiles.

  • PDF

Design and Evaluation of a Dynamic Anomaly Detection Scheme Considering the Age of User Profiles

  • Lee, Hwa-Ju;Bae, Ihn-Han
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.315-326
    • /
    • 2007
  • The rapid proliferation of wireless networks and mobile computing applications has changed the landscape of network security. Anomaly detection is a pattern recognition task whose goal is to report the occurrence of abnormal or unknown behavior in a given system being monitored. This paper presents a dynamic anomaly detection scheme that can effectively identify a group of especially harmful internal masqueraders in cellular mobile networks. Our scheme uses the trace data of wireless application layer by a user as feature value. Based on the feature values, the use pattern of a mobile's user can be captured by rough sets, and the abnormal behavior of the mobile can be also detected effectively by applying a roughness membership function with both the age of the user profile and weighted feature values. The performance of our scheme is evaluated by a simulation. Simulation results demonstrate that the anomalies are well detected by the proposed dynamic scheme that considers the age of user profiles.

  • PDF

Dead Pixel Detection Method by Different Response at Hot & Cold Images for Infrared Camera

  • Ye, Seong-Eun;Kim, Bo-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.1-7
    • /
    • 2018
  • In this paper, we propose soft dead pixels detection method by analysing different response at hot and cold images. Abnormal pixels are able to effect detecting a small target. It also makes confusing real target or not cause of changing target size. Almost exist abnormal pixels after image signal processing even if dead pixels are removed by dead pixel compensation are called soft dead pixels. They are showed defect in final image. So removing or compensating dead pixels are very important for detecting object. The key idea of this proposed method, detecting dead pixels, is that most of soft deads have different response characteristics between hot image and cold image. General infrared cameras do NUC to remove FPN. Working 2-reference NUC must be needed getting data, hot & cold images. The way which is proposed dead pixel detection is that we compare response, NUC gain, at each pixel about two different temperature images and find out dead pixels if the pixels exceed threshold about average gain of around pixels.

Automatic Detection of Work Distraction with Deep Learning Technique for Remote Management of Telecommuting

  • Lee, Wan Yeon
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.82-88
    • /
    • 2021
  • In this paper, we propose an automatic detection scheme of work distraction for remote management of telecommuting. The proposed scheme periodically captures two consequent computer screens and generates the difference image of these two captured images. The scheme applies the difference image to our deep learning model and makes a decision of abnormal patterns in the difference image. Our deep learning model is designed with the transfer learning technique of VGG16 deep learning. When the scheme detects an abnormal pattern in the difference image, it hides all texts in the difference images to protect disclosure of privacy-related information. Evaluation shows that the proposed scheme provides about 96% detection accuracy.

Abnormal Crowd Behavior Detection via H.264 Compression and SVDD in Video Surveillance System (H.264 압축과 SVDD를 이용한 영상 감시 시스템에서의 비정상 집단행동 탐지)

  • Oh, Seung-Geun;Lee, Jong-Uk;Chung, Yongw-Ha;Park, Dai-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.183-190
    • /
    • 2011
  • In this paper, we propose a prototype system for abnormal sound detection and identification which detects and recognizes the abnormal situations by means of analyzing audio information coming in real time from CCTV cameras under surveillance environment. The proposed system is composed of two layers: The first layer is an one-class support vector machine, i.e., support vector data description (SVDD) that performs rapid detection of abnormal situations and alerts to the manager. The second layer classifies the detected abnormal sound into predefined class such as 'gun', 'scream', 'siren', 'crash', 'bomb' via a sparse representation classifier (SRC) to cope with emergency situations. The proposed system is designed in a hierarchical manner via a mixture of SVDD and SRC, which has desired characteristics as follows: 1) By fast detecting abnormal sound using SVDD trained with only normal sound, it does not perform the unnecessary classification for normal sound. 2) It ensures a reliable system performance via a SRC that has been successfully applied in the field of face recognition. 3) With the intrinsic incremental learning capability of SRC, it can actively adapt itself to the change of a sound database. The experimental results with the qualitative analysis illustrate the efficiency of the proposed method.