IPv6 네트워크에서는 기본 보안 메커니즘인 IPSec 메커니즘을 사용함으로써, 통신 양자 간에 전송되는 데이터에 대한 무결성 및 기밀성을 보장하고, 데이터와 통신 주체에 대한 인증을 실시할 수 있다. 그러나 IPSec 메커니즘을 악용하여 대량의 비정상 트래픽(세션설정 단계 또는 통신 단계의 비정상 IPSec 트래픽)을 전송하였을 경우, IPSec 메커니즘 자체에서 해당 패킷을 차단하는 데 한계가 있다. 본 논문에서는 IPv6 네트워크 환경에서 IPSec 메커니즘의 ESP 확장헤더에 의해 암호화된 패킷의 비정상 여부를 복호화 없이 IPSec 세션테이블과 설정테이블을 이용하여 탐지함으로써, 성능향상을 가질 수 있는 효과적인 보안 시스템에 대한 설계 내용을 보이고자 한다. 또한 설계는 단계적 대응 메커니즘를 기반으로 한다.
Predicting network traffic volume has become a popular topic recently due to its support in many situations such as detecting abnormal network activities and provisioning network services. Especially, predicting the volume of the next upcoming traffic from the series of observed recent traffic volume is an interesting and challenging problem. In past, various techniques are researched by using time series forecasting methods such as moving averaging and exponential smoothing. In this paper, we propose a long short-term memory neural network (LSTM) based network traffic volume prediction method. The proposed method employs the changing rate of observed traffic volume, the corresponding time window index, and a seasonality factor indicating the changing trend as input features, and predicts the upcoming network traffic. The experiment results with real datasets proves that our proposed method works better than other time series forecasting methods in predicting upcoming network traffic.
인터넷의 급속한 증가는 네트워크상의 트래픽 형성에 중요한 변화를 가져오게 되었다. 통신 성능 향상을 지원하는 과정에서 여러 가지 통신상의 이상 현상들이 발생하게 되었으며, 그로 인한 통신상의 성능 문제에 부딪히게 되었다. 본 논문에서는 이러한 네트워크상의 비정상적인 트래픽의 예 중에서 비순서적 도착(Out-of-Order)에 대해서 실험을 하였으며, 트래픽 컨디셔너라는 개념과 이 개념을 도입한 독립형 구현 모델을 이용해서 네트워크상의 통신 성능을 개선하는 방법에 대해서 설명한다.
거동 이상 선박(갈지자 항행 선박, 제자리 순회 선박 등)은 정상적인 항로를 유지하는 선박에게 심각한 영향을 미칠 수 있는 요소이며, 현재 육지에 있는 VTS 센터와 해양 경찰이 연계되어 범죄 선박 및 사고 선박을 추적하고 있다. 하지만 인적 요인에 의한 위험 요인 식별의 한계는 명확하며 그를 보조할 수 있는 연구는 거의 없는 실정이다. 따라서, 이 연구에서는 퍼지추론을 이용하여 관제자 및 항해사를 위한 지능형 항해 거동 이상 선박 식별 시스템을 구현하고자 한다.
Maritime monitoring requirements have been beyond human operators capabilities due to the broadness of the coverage area and the variety of monitoring activities, e.g. illegal migration, or security threats by foreign warships. Abnormal vessel movement can be defined as an unreasonable movement deviation from the usual trajectory, speed, or other traffic parameters. Detection of the abnormal vessel movement requires the operators not only to pay short-term attention but also to have long-term trajectory trace ability. Recent advances in deep learning have shown the potential of deep learning techniques to discover hidden and more complex relations that often lie in low dimensional latent spaces. In this paper, we propose a deep autoencoder-based clustering model for automatic detection of vessel movement anomaly to assist monitoring operators to take actions on the vessel for more investigation. We first generate gridded trajectory images by mapping the raw vessel trajectories into two dimensional matrix. Based on the gridded image input, we test the proposed model along with the other deep autoencoder-based models for the abnormal trajectory data generated through rotation and speed variation from normal trajectories. We show that the proposed model improves detection accuracy for the generated abnormal trajectories compared to the other models.
트래픽 패턴-맵(Pattern-Map)은 전체/세부 도메인별 보안 상황을 근원지/목적지 IP 주소 범위로 이루어진 그리드 상에 표현하여 관리자에게 네트워크 보안상황을 실시간으로 인지시키는 도구이다. 각각의 그리드는 근원지-목적지간의 연결을 의미하며, 최다 점유를 차지하는 트래픽의 포트를 식별력을 갖는 색으로 표현한다. 이상 트래픽 현상의 검출은 가로 및 세로 열에 나타난 동일 색의 막대그래프(포트)의 개수와 그것의 합에 따라 결정되며, 그 결과로 선택된 세로 열과 가로 열을 활성화시켜 관리자에게 그 현상을 인지시킨다. 일반적으로 인터넷 웜이 발생할 경우에는 특정 근원지 열이 활성화되고, DDoS와 같은 현상은 목적지 열이 활성화되는 특징이 있다
본 논문에서는 기존 SNMP를 이용한 트래픽 분석 방법의 문제점을 개선시킨 SNMP 기반의 트래픽 추이 분석 알고리즘을 제안하였다. 기존 방법에서는 임계치를 적용함으로써 분석 시간이 많이 걸리며, 초기 공격 트래픽에 대해 탐지하지 못하는 취약점을 가지고 있었다. 본 논문에서는 임계치를 사용하지 않고 일주 트래픽 추이 분석, 프로토콜별 추이 분석 그리고 특정 MIB에서의 트래픽 발생 유무를 분석함으로써 기존 방법에서의 문제점을 해결할 수 있었다. 트래픽이 발생하게 되면 이 세 가지 분석 방법을 통해 이상 여부를 분석하고, 이상 트래픽이 중첩적으로 발생될 경우 현재 입력된 트래픽을 유해 트래픽으로 분석해 낼 수 있다. 제안한 알고리즘을 통해서 유해 트래픽을 빠르고 정확하게 분석해 낼 수 있으며, 이를 통해 트래픽 폭주 공격에 의한 피해를 줄일 수 있을 것이다.
텔레매틱스 교통정보(해당 도로의 통과 시간이나 속도)를 제공하기 위해 교통자료를 수집하는 다양한 장비들이 존재하지만, 최근 GPS(Global Positioning System) 위성 신호가 민간에 공개된 이후 수신 기술의 발달과 더불어 교통 자료를 수집하는 수단으로써 많은 주목을 받고 있다. GPS를 사용하면 기존의 도로 상에 직접 매설하여 쓰이던 검지기에 비해 투자 유지비용이 낮고 차량 운행 축을 따라 지속적으로 세밀한 자료를 자동적으로 수집할 수 있다는 장점을 가진다. 하지만, 기존의 타 검지기에 의해 수집된 자료에 적용해 온 교통 정보 필터링 기법들을 GPS 자료에 그대로 적용하기에는 여러 가지 제약사항이 존재한다. 본 논문에서는 GPS로부터 수집되는 교통 자료 중 비정상적인 흐름으로 도로를 통과한 자료를 필터링하여 사용자들에게 보다 정확한 교통 정보를 제공할 수 있는 방법을 제시한다. 먼저 가까운 과거의 자료로부터 사분위수(quartile)와 해당 도로의 가중치에 의한 패턴을 구축하고, 이후 이를 실시간 자료에 적용해 비정상적인 자료를 필터링 해냄으로써 더욱 신뢰성 있는 교통정보를 생성할 수 있게 되는 것이다. 또한, 서울 강남대로를 대상으로 실제 GPS 수신기를 장착하고 운행한 차량들이 수집한 통행속도 자료를 바탕으로 이력 자료를 활용해 비정상적인 자료를 필터링한 대표 통행 속도가 기존의 필터링 방법들을 통한 값보다 더욱 정확한 결과를 보임을 증명하였다.
Communications for Statistical Applications and Methods
/
제18권4호
/
pp.517-525
/
2011
본 연구는 이상치가 존재하는 자료에 적용될 수 있는 방법을 비교한 연구로서, 이분산 시계열 모형 하에서 로버스트 추정 방법의 효용성을 보이고자 한다. GARCH 모형하에서 이상치 탐지 기법과 GARCH 모형을기반한 로버스트 추정방법의 성능을 비교하였다. 실제 인터넷 트래픽 자료에 두 방법을 적용했을때, 로버스트 추정방법이 이상치 탐지 기법에 비해 덜 복잡하고 성능이 우수함을 입증하였다.
본 연구에서는 요일별 교통량 변동 패턴 기반 평활화법을 활용하여 정량적 이상치 판정 알고리즘을 개발하였다. 또한 개발된 알고리즘을 활용하여 2010년 일반국도 상시조사 지점 중 14개 지점의 교통량 자료에 대한 이상치 필터링을 수행하여 알고리즘의 적합성 여부를 평가하였다. 그 결과 정상일 필터링율은 98.2%, 이상일 중 오필터링율은 8.0%로 평가되었다. 따라서 본 연구에서 개발된 알고리즘은 수집된 교통량 자료의 1차적인 이상치 필터링에 충분히 적용 가능할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.