• Title/Summary/Keyword: Abnormal Beat Detection

Search Result 9, Processing Time 0.022 seconds

PVC Detection Based on the Distortion of QRS Complex on ECG Signal (심전도 신호에서 QRS 군의 왜곡에 기반한 PVC 검출)

  • Lee, SeungMin;Kim, Jin-Sub;Park, Kil-Houm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.731-739
    • /
    • 2015
  • In arrhythmia ECG signal, abnormal beat that has various abnormal shape depending on the generation site and conduction disorders is included and it is very important to diagnose heart disease such as arrhythmia. In this paper, we propose a PVC abnormal beat detection algorithm associated with ventricular disease. The PVC abnormal beat is characterized by distortion of the QRS complex occurs among the components of the ECG signal. Therefore it is possible to detect PVC abnormal beat according to the degree of distortion of the QRS complex. First, quantify the distortion of the QRS complex by using the potential of the R-peak, kurtosis and period. By using the mean and standard deviation, PVC abnormal beat is detected depending on the degree of distortion from the normal beat. The proposed algorithm can detect the average over 98% of the AAMI-V class type abnormal beat associated with ventricular disease in MIT-BIH arrhythmia database.

Comparative Learning based Deep Learning Algorithm for Abnormal Beat Detection using Imaged Electrocardiogram Signal (비정상심박 검출을 위해 영상화된 심전도 신호를 이용한 비교학습 기반 딥러닝 알고리즘)

  • Bae, Jinkyung;Kwak, Minsoo;Noh, Kyeungkap;Lee, Dongkyu;Park, Daejin;Lee, Seungmin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.30-40
    • /
    • 2022
  • Electrocardiogram (ECG) signal's shape and characteristic varies through each individual, so it is difficult to classify with one neural network. It is difficult to classify the given data directly, but if corresponding normal beat is given, it is relatively easy and accurate to classify the beat by comparing two beats. In this study, we classify the ECG signal by generating the reference normal beat through the template cluster, and combining with the input ECG signal. It is possible to detect abnormal beats of various individual's records with one neural network by learning and classifying with the imaged ECG beats which are combined with corresponding reference normal beat. Especially, various neural networks, such as GoogLeNet, ResNet, and DarkNet, showed excellent performance when using the comparative learning. Also, we can confirmed that GoogLeNet has 99.72% sensitivity, which is the highest performance of the three neural networks.

Detection of Abnormal Heartbeat using Hierarchical Qassification in ECG (계층구조적 분류모델을 이용한 심전도에서의 비정상 비트 검출)

  • Lee, Do-Hoon;Cho, Baek-Hwan;Park, Kwan-Soo;Song, Soo-Hwa;Lee, Jong-Shill;Chee, Young-Joon;Kim, In-Young;Kim, Sun-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.466-476
    • /
    • 2008
  • The more people use ambulatory electrocardiogram(ECG) for arrhythmia detection, the more researchers report the automatic classification algorithms. Most of the previous studies don't consider the un-balanced data distribution. Even in patients, there are much more normal beats than abnormal beats among the data from 24 hours. To solve this problem, the hierarchical classification using 21 features was adopted for arrhythmia abnormal beat detection. The features include R-R intervals and data to describe the morphology of the wave. To validate the algorithm, 44 non-pacemaker recordings from physionet were used. The hierarchical classification model with 2 stages on domain knowledge was constructed. Using our suggested method, we could improve the performance in abnormal beat classification from the conventional multi-class classification method. In conclusion, the domain knowledge based hierarchical classification is useful to the ECG beat classification with unbalanced data distribution.

PVC Classification by Personalized Abnormal Signal Detection and QRS Pattern Variability (개인별 이상신호 검출과 QRS 패턴 변화에 따른 조기심실수축 분류)

  • Cho, Ik-Sung;Yoon, Jeong-Oh;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1531-1539
    • /
    • 2014
  • Premature ventricular contraction(PVC) is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Nevertheless personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. In other words, the design of algorithm that exactly detects abnormal signal and classifies PVC by analyzing the persons's physical condition and/or environment and variable QRS pattern is needed. Thus, PVC classification by personalized abnormal signal detection and QRS pattern variability is presented in this paper. For this purpose, we detected R wave through the preprocessing method and subtractive operation method and selected abnormal signal sets. Also, we classified PVC in realtime through QS interval and R wave amplitude. The performance of abnormal beat detection and PVC classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 98.33% in abnormal beat classification error and 94.46% in PVC classification.

Patient Adaptive Pattern Matching Method for Premature Ventricular Contraction(PVC) Classification (조기심실수축(PVC) 분류를 위한 환자 적응형 패턴 매칭 기법)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2021-2030
    • /
    • 2012
  • Premature ventricular contraction(PVC) is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Particularly, in the healthcare system that must continuously monitor patient's situation, it is necessary to process ECG (Electrocardiography) signal in realtime. In other words, the design of algorithm that exactly detects R wave using minimal computation and classifies PVC by analyzing the persons's physical condition and/or environment is needed. Thus, the patient adaptive pattern matching algorithm for the classification of PVC is presented in this paper. For this purpose, we detected R wave through the preprocessing method, adaptive threshold and window. Also, we applied pattern matching method to classify each patient's normal cardiac behavior through the Hash function. The performance of R wave detection and abnormal beat classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.33% in R wave detection and the rate of 0.32% in abnormal beat classification error.

A Study on the Detection of the Ventricular Fibrillation based on Wavelet Transform and Artificial Neural Network (웨이브렛과 신경망 기반의 심실 세동 검출 알고리즘에 관한 연구)

  • Song Mi-Hye;Park Ho-Dong;Lee Kyoung-Joung;Park Kwang-Li
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.780-785
    • /
    • 2004
  • In this paper, we proposed a ventricular fibrillation detection algorithm based on wavelet transform and artificial neural network. we selected RR intervals, the 6th and 7th wavelet coefficients(D6, D7) as features for classifying ventricular fibrillation. To evaluate the performance of the proposed algorithm, we compared the result of the proposed algorithm with that of fuzzy inference and fuzzy-neural network. MIT-BIH Arrhythmia database, Creighton University Ventricular Tachyarrhythmia database and MIH-BIH Malignant Ventricular Arrhythmia database were used as test and learning data. Among the algorithms, the proposed algorithm showed that the classification rate of normal and abnormal beat was sensitivity(%) of 96.10 and predictive positive value(%) of 99.07, and that of ventricular fibrillation was sensitivity(%) of 99.45. Finally. the proposed algorithm showed good performance compared to two other methods.

An Efficient VEB Beats Detection Algorithm Using the QRS Width and RR Interval Pattern in the ECG Signals (ECG신호의 QRS 폭과 RR Interval의 패턴을 이용한 효율적인 VEB 비트 검출 알고리듬)

  • Chung, Yong-Joo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.96-101
    • /
    • 2011
  • In recent days, the demand for the remote ECG monitoring system has been increasing and the automation of the monitoring system is becoming quite of a concern. Automatic detection of the abnormal ECG beats must be a necessity for the successful commercialization of these real time remote ECG monitoring system. From these viewpoints, in this paper, we proposed an automatic detection algorithm for the abnormal ECG beats using QRS width and RR interval patterns. In the previous research, many efforts have been done to classify the ECG beats into detailed categories. But, these approaches have disadvantages such that they produce lots of misclassification errors and variabilities in the classification performance. Also, they require large amount of training data for the accurate classification and heavy computation during the classification process. But, we think that the detection of abnormality from the ECG beats is more important that the detailed classification for the automatic ECG monitoring system. In this paper, we tried to detect the VEB which is most frequently occurring among the abnormal ECG beats and we could achieve satisfactory detection performance when applied the proposed algorithm to the MIT/BIH database.

Detection Algorithm of Cardiac Arrhythmia in ECG Signal using R-R Interval (심전도신호의 R-R 간격을 이용한 부정맥 구간 검출 알고리즘)

  • Kim, Kyung Ho;Lee, Sang Woon;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.85-89
    • /
    • 2014
  • Electrocardiogram (ECG) is a diagnostic test which records the electrical activity of the heart, shows abnormal rhythms and detects heart muscle damages. With this ECG signal, medical centers diagnose patients' heart disease symptoms. A normal resting heart rate for adults rages from 60 to 100 beats a minute. An irregular heartbeat is called "arrhythmia", and arrhythmia is also called "cardiac dysrhythmia". In an arrhythmia, the heartbeat maybe too slow(slower than 60beats), too rapid(faster than 100beats), too irregular, etc. Among these symptoms of arrhythmia, if the heart beat is slower than the normal range, the symptom is called "bradycardia", and if it is faster than the range, it is called "tachycardia" In this letters, we proposed the detection algorithm of cardiac arrhythmia in ECG signal using R-R interval through the detection of R-peak.

Optimization of 1D CNN Model Factors for ECG Signal Classification

  • Lee, Hyun-Ji;Kang, Hyeon-Ah;Lee, Seung-Hyun;Lee, Chang-Hyun;Park, Seung-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.29-36
    • /
    • 2021
  • In this paper, we classify ECG signal data for mobile devices using deep learning models. To classify abnormal heartbeats with high accuracy, three factors of the deep learning model are selected, and the classification accuracy is compared according to the changes in the conditions of the factors. We apply a CNN model that can self-extract features of ECG data and compare the performance of a total of 48 combinations by combining conditions of the depth of model, optimization method, and activation functions that compose the model. Deriving the combination of conditions with the highest accuracy, we obtained the highest classification accuracy of 97.88% when we applied 19 convolutional layers, an optimization method SGD, and an activation function Mish. In this experiment, we confirmed the suitability of feature extraction and abnormal beat detection of 1-channel ECG signals using CNN.