• Title/Summary/Keyword: Ablation Characteristics

Search Result 135, Processing Time 0.032 seconds

Excimer laser micromachining of silicon in liquid phase (액상에서의 엑시머 레이저 실리콘 미세가공)

  • Jang, Deok-Suk;Kim, Dong-Sik
    • Laser Solutions
    • /
    • v.11 no.1
    • /
    • pp.12-18
    • /
    • 2008
  • Laser micromachining is a promising technique to fabricate the micro-scale devices. However, there remains important challenges to reducethe redeposition of ablated materials around the laser irradiated zone and to get a smooth surface, especially for metal and semiconductor materials. To achieve the high-quality micromachined devices, various methods have been developed. Liquid-assisted micromachining can be a good solution to overcome the previously mentioned problems. During the laser ablation process, the liquid around the solid sample dramatically changes the ablation characteristics, such as ablation rate, surface profile, formation of debris, and so on. In this investigation, we conducted the laser micromachining of Si in various liquid environmental conditions, such as liquid types, liquid thickness. In addition, using nanoscale time-resolved shadowgraphy technique, we observed the ablation process in liquid environments to understand the mechanism of liquid-assisted laser micromachining.

  • PDF

Effects of Beam Parameters on Excimer Laser Ablation (엑사이머 레이저 어블레이션 가공에서의 빔변수의 영향)

  • Bang Se Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.38-46
    • /
    • 2005
  • In laser machining such as drilling with $CO_2$ or Nd:YAG laser, and etching or ablation with Excimer laser, one of the most important parameters affecting the machining is known to be beam characteristics. In this paper a numerical study is performed to investigate the effects of beam parameters, especially in the process of excimer laser ablation of polymers. Results of different beam conditions reveal that if the ablated depth is small compared to beam size the simple photochemical etching model is suitable to predict the etched shape, and that the importance of precise alignment becomes large as beam quality factor becomes larger.

A Study of PCL and PET ablation by ultrashort laser (극초단 레이저를 이용한 PCL 및 PET 가공에 대한 연구)

  • Choi, Hae-Woon;Shin, Hyun-Myung
    • Laser Solutions
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 2008
  • This paper describes microscale laser structuring of electrospun(ES) PCL and PET nanofiber meshes. Electrospinning produces non-woven meshes of synthetic or natural materials fibers with diameters ranging from micron down to the nanometer scales that are advantageous for the supporting the growth of the small scale structures. Ultrashort laser found to be effective on the fabrication of engineeredtissue scaffold with minimum heat affect and ultra precision ablation patterns. The affect of energy range for ablation quality was analyzed and ablation characteristics of PCL and PET were compared.

  • PDF

A Study on the surface characteristics of LGP mold and product depending on different fabrication methods of optical pattern (광학패턴 가공방법에 따른 LGP 금형 및 성형품의 표면특성 연구 : Laser Ablation, Chemical Etching, LiGA-Reflow 방식)

  • Do, Y.S.;Kim, J.S.;Ko, Y.B.;Kim, J.D.;Yoon, K.H.;Hwang, C.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.213-216
    • /
    • 2007
  • LGP (light guide plate) of LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of the major components which affects the product quality of LCD. In the present study, the optical patterns of LGP(2.2") are manufactured by three different methods, namely, laser ablation, chemical etching and LiGA - reflow, respectively. The pattern surface images and roughness of mold and product were compared to check the optical characteristics. From the results of measurement the optical patterns fabricated by LiGA - reflow method showed the best geometric structure as intended in design and the lowest roughness among those.

  • PDF

Polycarbonate Track-Etched Membrane Micromachining by Ultrafast Pulse Laser (극초단 레이저를 이용한 PC-TEMs 초정밀 가공에 대한 연구)

  • Choi, Hae-Woon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • PC-TEMs (Polycarbonate Track-Etched membranes) were micro-drilled for biomedical applications by ultrafast pulsed laser. The ablation and damage characteristics were studied on PE-TEMs by assuming porous thin membranes. The experiments were conducted in the range of 2.02 $J/cm^2$ and 8.07$J/cm^2$. The ablation threshold and damage threshold were found to be 2.56$J/cm^2$ and 1.14$J/cm^2$, respectively. While a conical shaped drilled holes was made in lower fluence region, straight shaped holes were drilled in higher fluence region. Nanoholes made the membrane as porous material and ablation characteristics for both bulk and thin film membranes were compared.

Study on the ablation structures of Carbon/Phenolic composites used PAN based carbon fiber (PAN계 탄소섬유를 이용한 Carbon/Phenolic 복합재의 삭마구조 특성 연구)

  • Im, Yeon-Su;Kim, Dong-Gyu;Park, In-Seo;Yun, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.339-348
    • /
    • 1994
  • The study has been conducted to know ablation microstructures and characteristics in carbon /phenolic composites. Ablation properties depend on mole fraction of $H_2O$ and $C0_2$ gas which were produced by reaction between propellant and oxidizer. However, the results of this study shown that the ablation also depended on weaving structure, density of fabric, and tow size of carbon fiber. 3K 8HS fabric showed superior ablation resistance to others, 3K twill and 12K 8HS fabric structures.

  • PDF

Computational Modeling and Analysis of Ablative Composites Using Micro-tomographic Images (미세 단층 영상을 이용한 삭마 복합재료의 전산 모델링 및 해석)

  • Cheon, Jae Hee;Roh, Kyung Uk;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.642-648
    • /
    • 2019
  • In this study, Image-based computational analysis using the developed models was performed to predict the degradation of effective properties by ablation. The ablation tests of carbon/phenolic composites were performed using a 0.4 MW arc-heated wind tunnel. The carbon/phenolic composite samples were scanned using the micro-computed tomography (Micro-CT) to analyze the ablation characteristics according to a duration time of the ablation test. By calibrating the scanned images, computational models were developed that reflect the actual microstructure of the ablation composites. Also, nine computational models that reflect the actual pore shape were developed using the created cross-sectional images. Image-based computational analysis using the developed models was performed to predict the degradation of effective properties by ablation and the decrease of effective properties was confirmed with increase of porosity.

Comparative Study on Ablation Characteristics of Ti-6Al-4V Alloy and Ti2AlN Bulks Irradiated by Femto-second Laser (펨토초 레이저에 의한 티타늄 합금과 티타늄질화알루미늄 소결체의 어블레이션특성 비교연구)

  • Hwang, Ki Ha;Wu, Hua Feng;Choi, Won Suk;Cho, Sung Hak;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.97-103
    • /
    • 2019
  • Mn+1AXn (MAX) phases are a family of nano-laminated compounds that possess unique combination of typical ceramic properties and typical metallic properties. As a member of MAX-phase, $Ti_2AlN$ bulk materials are attractive for some high temperature applications. In this study, $Ti_2AlN$ bulk with high density were synthesized by spark plasma sintering method. X-ray diffraction, micro-hardness, electrical and thermal conductivity were measured to compare the effect of material properties both $Ti_2AlN$ bulk samples and a conventional Ti-6Al-4V alloy. A femto-second laser conditions were conducted at a repetition rate of 6 kHz and laser intensity of 50 %, 70% and 90 %, respectively, laser confocal microscope were used to evaluate the width and depth of ablation. Consequently, the laser ablation result of the $Ti_2AlN$ sample than that of the Ti-6Al-4V alloys show a considerably good ablation characteristics due to its higher thermal conductivity regardless of to high densification and high hardness.

A Study on the Surface Characteristics of Injection Mold and Injection Molded Part depending on LGP-Mold Fabrication Methods (도광판 금형의 제작 방법에 따른 사출금형 및 성형품의 표면특성에 관한 연구)

  • Do, Y.S.;Kim, J.S.;Ko, Y.B.;Kim, J.D.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.596-602
    • /
    • 2007
  • LGP (Light Guiding Plate) of LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of the major components that affect the product quality of LCD. The optical patterns of LGP(2.2") molds are fabricated by three different methods, namely, (1) laser ablation, (2) chemical etching and (3) LiGA-reflow, respectively. The characteristics of surface patterns and roughnesses of molds and injection molded parts were compared to evaluate the optical characteristics. The optical patterns of injection molded LGP with mold fabricated by LiGA - reflow method showed the best geometric structure. The surface roughness (Ra) of LGP#s with molds fabricated by (1) laser ablation: $Ra={\sim}31nm$, (2) chemical etching: $Ra={\sim}22nm$, and (3) LiGA-reflow: $Ra={\sim}4nm$.

A Study on the Influence Factors for Ablation Rate of Graphite Nozzle Throat Insert (흑연 노즐목 삽입재의 삭마율에 미치는 영향 인자 연구)

  • Hahm, Heecheol;Kang, Yoongoo;Seo, Sangkyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.12-20
    • /
    • 2017
  • The ablation characteristics of graphite nozzle throat insert was analyzed for the use in solid rocket propulsion system. The propulsion system was composed of three types of conventional nozzles, such as De-Laval type, blast tube type, and submerged type. Various kinds of propellants were used in ten kinds of propulsion system that had different shapes with each other. Total forty eight tests were performed. From the results of the analysis, it was found that the ablation rate was increased for the higher average chamber pressure and the higher oxidizer mole fraction. A useful correlation for nozzle throat ablation rate was developed in terms of the chamber pressure, oxidizer mole fraction, and throat size. The calculated ablation rates from the correlation showed agreement within ${\pm}0.10mm/s$ with the experimentally determined values.